

M

ATLAB

The Language of Technical Computing

Computation

Visualization

Programming

Building GUIs with MATLAB

Version 5

®

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com

Web

ftp.mathworks.com

Anonymous FTP server

comp.soft-sys.matlab

Newsgroup

support@mathworks.com

 Technical support

suggest@mathworks.com

 Product enhancement suggestions

bugs@mathworks.com

 Bug reports

doc@mathworks.com

 Documentation error reports

subscribe@mathworks.com

 Subscribing user registration

service@mathworks.com

 Order status, license renewals, passcodes

info@mathworks.com

 Sales, pricing, and general information

Building GUIs with MATLAB

 COPYRIGHT 1984 - 1997 by The MathWorks, Inc. All Rights Reserved.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc

.

U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency of the U. S.
Government, the following shall apply:

(a) for units of the Department of Defense:
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restric-
tions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause
at DFARS 252.227-7013.
(b) for any other unit or agency:
NOTICE - Notwithstanding any other lease or license agreement that may pertain to, or accompany the
delivery of, the computer software and accompanying documentation, the rights of the Government
regarding its use, reproduction and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR.
Contractor/manufacturer is The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500.

MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow
and Target Language Compiler are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing New for MATLAB 5
June 1997 Second printing Revised for MATLAB 5.1

☎PHONE

FAX

✉MAIL

INTERNET

@

Contents

1
Introduction

Introduction . 1-2
How to Use This Book . 1-2
The Big Picture . 1-3

A Quick Start with Guide . 1-4
Modifying Properties with the Property Editor 1-4
Adding Buttons with the Control Panel 1-6
Setting Callbacks with the Callback Editor 1-7
Activating the Figure . 1-8
The Bottom Line . 1-9

2
GUI Design

Introduction . 2-2

Design Principles . 2-3
Simplicity . 2-4
Consistency . 2-7
Familiarity . 2-7
The Dynamic Interface . 2-9
Keep It Simple . 2-11

Design Process . 2-12
A Complete Example: Precipitation Files 2-15

1. Define the Task—Draw the GUI 2-15
2. Draw the GUI—Test the GUI . 2-18
3. Write the Code—Test the Code . 2-19
i

ii

Contents

3
GUI Implementation

Introduction . 3-2

Handle Graphics and the Property Editor 3-3
The Property Editor . 3-3

Using the Property List . 3-4
Using the Object Browser . 3-5
Secrets for the Power User . 3-7

GUI Layout with Guide . 3-9
The Control Panel . 3-10

Controlling and Activating the Figure 3-11
The Property Editor . 3-12
The Callback Editor . 3-12
The Alignment Tool . 3-14

Alignment Tool Features . 3-14
The Menu Editor . 3-15
A Complete Example . 3-16

Writing Callbacks . 3-25
Layout vs. Callbacks . 3-25
Callback Tips . 3-25

A Complete Example: Temperature Conversion 3-35

4
Reference

Introduction

 . 1-2
How to Use This Book 1-2
The Big Picture 1-3

A Quick Start with Guide

 1-4
Modifying Properties with the Property Editor 1-4
Adding Buttons with the Control Panel 1-6
Setting Callbacks with the Callback Editor 1-7
Activating the Figure 1-8
The Bottom Line 1-9
1

Introduction

1

Introduction

Introduction
Good tools make for pleasant work.

This book is about how to make MATLAB-based Graphical User
Interface (GUI) tools. It falls naturally into two parts:

• GUI design, or how to make something that’s useful

• GUI implementation, or how to make something that works

The principles of good GUI design are, for the most part, timeless and
universal. They apply in MATLAB as much as they apply anywhere else,
though we consider them here with respect to specific examples. The
guidelines for GUI implementation, on the other hand, tend to be much
more specific—many of the implementation details we discuss here
weren’t possible in MATLAB until recently. Accordingly, in this manual
there is a trend from the general to the specific. Part of the second half of
the manual is devoted to the use of MATLAB’s GUI-building tool, Guide
(Graphical User Interface Development Environment). A quick start
example of how to use Guide also closes out this introductory chapter.

How to Use This Book
The goal of this book is to address both the design of the GUI, and its
rapid and robust implementation in the MATLAB environment using
Guide. If you only want to know how to use Guide, read through the rest
of this introduction and then go to Chapter 3, “GUI Implementation.” If
you also want to learn about designing GUIs, read Chapter 2 as well.

Examples Online The M-files behind many of the examples in this
manual can be found in ftp://ftp.mathworks.com/pub/mathworks/
toolbox/building-guis/.
1-2

Introduction
The Big Picture
This manual includes many specific recommendations about details of
implementation, design, and so on, but keep in mind the big picture: the
user interface you create, whether big or small, simple or extravagant, is
a single entity with a certain personality to help a specific user perform a
specific task. Who is that user? What is that task? What is that
personality?

To see if your interface is doing a good job, here are two good generic
questions:

1 Do the users always know where they are?

2 Do they always know where to go next?

Keep returning to these questions, keep thinking about the big picture,
and the details fall into place much easier.

The user interface you create is a
 single entity with a
 certain personality to help a
 specific user perform a
 specific task.

The Big Picture
1-3

1 Introduction
A Quick Start with Guide
MATLAB is built around a programming language, and as such it’s
really designed with tool-building in mind. Guide extends MATLAB’s
support for rapid coding into the realm of building GUIs.

Guide is a set of MATLAB tools designed to make building GUIs easier
and faster. Just as writing math in MATLAB is much like writing it on
paper, building a GUI with Guide is much like drawing one on paper. As
a result, you can lay out a complex graphical tool in minutes. Once your
buttons and plots are in place, the Guide Callback Editor lets you set up
the MATLAB code that gets executed when a particular button is
pressed.

Modifying Properties with the Property Editor
The five tools that together make up Guide are:

• The Property Editor

• The Guide Control Panel

• The Callback Editor

• The Alignment Tool

• The Menu Editor

We consider the top three in this Quick Start introduction. Let’s start
with the Property Editor. In MATLAB Handle Graphics, every graphical
object has a handle and a number of properties. For instance, a figure
window has a Color property and a Visible property, and so on. To view
and change these properties from the command line, you need to use the
set and get commands together with the handle for the figure. The
Property Editor is designed to let you modify these properties
interactively. For instance, plot the curve t sin(t) :

t = 0:0.1:20;
plot(t,t.*sin(t))
get(gcf, 'Color')
ans =
0.8000 0.8000 0.8000

Here we’re using the get command to query the figure’s Color property
(recall that gcf is a function that returns the handle of the current
1-4

A Quick Start with Guide
figure). All colors in MATLAB are stored as RGB (red, green, and blue)
triplets, where [1 1 1] is white, and [0 0 0] is black. We can use the
Property Editor to find and modify the same information. Invoke the
Property Editor with the command propedit.

propedit(gcf)

The Property Editor can be used to change the properties of the figure.
Click in the Show Property List checkbox and scroll down until you see
the word Color in the first column of the Property List. Click on that line
in the listbox, and the current color of the figure quickly appears in the
edit field just to the right. Now you can change to something darker, say
[0.6 0.6 0.6]. You can use the Property Editor to query or change any
property.

As a simple GUI for getting started, let’s add two buttons to this figure:
one to turn the axis grid off and one to turn it back on.

grid on grid off

Figure 1

grid on
Callback

grid off
Callback

grid on grid off

Figure 1

click
1-5

1 Introduction
Adding Buttons with the Control Panel
Typing guide in the MATLAB Command Window brings up the Guide
Control Panel and “controls” (or puts into edit mode) the sine wave
figure. Here’s what you should see.

The dashed white lines in the controlled figure shown on the left above
indicate its controlled state. The Guide Control Panel is divided into
three main parts:

• list of Guide Tools (at the top)

• Guide-Controlled Figure List (in the middle)

• New Object Palette (at the bottom)

The Guide Tools include the already-mentioned Property Editor, the
Callback Editor, the Alignment Tool, and the Menu Editor. In this
example, the Property Editor button is selected (“pushed in”) because
that tool is currently open on the desktop.

In the middle of the Control Panel, the Guide-Controlled Figure List
shows what figures are open and whether or not they are being
“controlled” by Guide. When a figure is in a Guide-controlled state, you
can move buttons, axes, and other objects inside that figure simply by
clicking on them and dragging them—a welcome relief from calculating

indicate the figure is
controlled by Guide.

The Figure List
in the Control
Panel also shows
which figures
are controlled.

Dashed white lines in the figure
1-6

A Quick Start with Guide
numerical positions in MATLAB code. Once everything is as you like it,
then you can “activate” the figure to return it to normal behavior (i.e. no
clicking and dragging).

At the bottom of the Control Panel is the New Object Palette. To add an
object like a push button, you click on the appropriate region and then
click and drag in the Guide-controlled figure. Click once on the “button”
field in the Guide Control Panel and you can add a button to the figure
by clicking in the controlled figure and dragging until the button is the
size you want.

The new button is still selected, so use the Property Editor to set its
String property to 'grid on' (it’s important to include the single
quotes). Now you have a figure that looks like the rightmost figure below.

Setting Callbacks with the Callback Editor
We’ve positioned a button where we want it, but we haven’t defined what
happens when it gets clicked. This is a job for the Callback Editor. With
the button still selected, open up the Callback Editor by clicking the
second tool in the Control Panel, select Callback from the pop-up menu,

then the axes are resized then the button is addedFirst the figure is controlled,
by clicking and dragging, using the Control Panel

and modified with the
Property Editor.
1-7

1 Introduction
and enter the callback: grid on (No need for quotes when using the
Callback Editor).

Once the figure is activated, whenever the button is pushed, MATLAB
runs this code, and the grid gets turned on. The code you choose to put in
here can be as simple or complex as you like. In this case, the code is quite
simple. Before we finish up, we want to add another button similar to the
first one. Copy and paste the button shown above using the Edit menu in
the controlled figure, change both the string and the callback to say grid
off, and you’re ready to run.

Activating the Figure
The last step is to pull the figure out of edit mode. This is known as
“activating” the figure. First, click on the Controlled Figure List in the
Guide Control Panel where it says Figure No. 1. The Controlled Figure
List indicates that Figure 1 is about to be activated. Now press the Apply
button, and the figure is activated (you are asked if you want to save the
figure first). The result is a brand new MATLAB GUI.

The “grid on” button is selected.
Notice the pop-up menu
must be set to “Callback.”
1-8

A Quick Start with Guide
The Bottom Line
It will always be hard to design good GUIs, but it shouldn’t be so hard to
implement them. Guide is designed to take the tedium out of the process.
But in addition to being a layout tool for GUIs, Guide gives you powerful
tools like the Property Editor that can be used any time you’re dealing
with MATLAB graphics. The Property Editor alone can be thought of as
a debugging tool, a coding assistant (for remembering all those property
names and values), and a layout tool. When combined with the Guide
Control Panel, the Callback Editor, the Menu Editor and the Alignment
Tool, the resulting combination gives you unprecedented command of
MATLAB graphics. Good tools make for pleasant work, and Guide makes
building good tools easier than ever.

Figure 1 is now active.

Since there are no
controlled figures, the
New Object Palette
is grayed out.
1-9

1 Introduction
1-10

Design Principles 2-3
Simplicity . 2-4
Consistency . 2-7
Familiarity . 2-7
The Dynamic Interface 2-9
Keep It Simple 2-11

Design Process 2-12
A Complete Example: Precipitation Files 2-15
2

GUI Design

Introduction . 2-2

2 GUI Design
Introduction
This chapter is about the first half of the GUI creation process: designing
the GUI. Designing means everything you do before you start to write the
code that results in a final working GUI. Since GUI design is not a simple
recipe, this chapter is itself divided into two parts: guiding principles for
design, and a suggested process to follow for design.
2-2

Design Principles
Design Principles
GUI design has been around for a short time, but the universal qualities
of good design have remained unchanged by its arrival. This disappoints
some people who believe GUI design ought to be a completely unexplored
territory. But it can also be extremely comforting to tackle a GUI design
problem and find centuries of accumulated wisdom waiting patiently to
help you.

Hundreds of books have been written about design, and the best we can
expect to do here is emphasize fundamental themes. The good news is
that the same ideas keep coming up over and over again. Here is the
short list: Simplicity, Consistency, and Familiarity.

Each word is really the center of a natural group, since many words can
be used to describe the same basic ideas. But of these concepts, large and
small, the undisputed king is this: Simplicity.

To the quantitatively inclined, these ideals may sound too fuzzy. How
can we be more specific? With respect to GUI design, two metrics inform
everything we do:

1 How long does it take to perform a task the first time?

2 How long does it take to perform a task once the interface is familiar?

Each of the themes above bears directly on these two measures.

Simplicity

Consistency

Familiarity

unity clarity
directnesselegance

charmcomfort

alignment integrity
harmony

friendliness
2-3

2 GUI Design
Simplicity
Simplicity in design is our chief goal. A simple GUI has a clean look and
a sense of unity. It’s very easy to add functionality to the GUI you’re
building, but if that functionality really doesn’t belong, take it out. Avoid
screen clutter, and only present users with choices that advance them
toward the completion of the task.

Emphasize Form, not Number Clutter obscures valuable information.
Since visualization is inherently more qualitative than quantitative,
concentrate on the shape and let the labeling vanish.

Once you let yourself remove a piece of the GUI that doesn’t absolutely
need to be there, you may find that you can eliminate a lot of supporting
machinery that no longer has any purpose.

Minimize the Area of Interaction Don’t use two figures when one will
do. If you’re demonstrating input-output relationships, put the input
right next to the output.

The grid lines on the
left don’t really add
value to the image.
2-4

Design Principles
This Optimization Toolbox demo (bandem.m) shows how different
optimization methods find the lowest point in a complex surface.

The figure above shows a contour plot of a function we’re trying to
minimize. We are presented with the starting point for the minimization
and the correct endpoint at the very lowest point of the surface. We are
given, from the command line, several numbered options to choose from.
Type in a number and you see an animation of the minimization as it
occurs.

The figure above shows an improved version of the demo. We’ve unified
the presentation into one figure to minimize the area of interaction.
We’ve also replaced entering a number between one and six with clicking
on a button. This is another way to minimize the area of interaction. The

The original
Banana Function
demo. You have to
shift your attention
from the Command
Window to the
figure and back.

The redesigned
Banana Function
demo. Now everything
is on one figure.
2-5

2 GUI Design
method labels are right on the buttons. Finally, since the demo is
qualitative (the goal is to find the lowest point), we can throw away the
numbers on the plot and turn up the contrast on the colors, thereby
making the graph much more readable.

Use Graphical Input Rather Than Numeric Rather than typing in num-
bers, let the user enter data by directly “touching” the graphic. Let the
graphic index into itself.

In the example shown below, you can “walk around” the
three-dimensional shape shown on the right side of the figure by setting
the camera position of the viewpoint. Camera position is given by three
Cartesian coordinates that can be hard to determine, but this little GUI
sidesteps the problem by letting the user place the camera (represented
by an X) on a viewing circle around a small representation of the shape.

In this example you click on the X to change
the position of the camera. Click on the dot
to change the position of the light source.
2-6

Design Principles
Consistency
The further users are from their base of experience, the more likely they
are to feel disoriented. Anything you can do to keep the user from feeling
confused is extraordinarily important.

The GUI on the left shows sound analysis capability (filename
xpsound.m), and the one on the right introduces some graphics
programming concepts (filename graf3d.m). They are in two very
different parts of the MATLAB demo software, but they share (along
with a great many other MATLAB demos) a number of basic layout
characteristics. This consistency makes it easier to move from one demo
to the next by generating a sense of familiarity, which also leads to the
next theme.

Familiarity
If the GUI that you create is in some sense familiar to its users, then they
can generally learn how to use it more quickly. This is value of basing the
GUI on a good metaphor. They might not know how to do a given task,
but the metaphor helps them make a good guess.

These two demos are about very different things, but both respect the
convention of putting controls on the right side grouped inside a frame.
Notice the consistent placement of the Info and Close buttons.
2-7

2 GUI Design
Use the Familiar to Draw Users into the GUI Even a small connection
to the user’s real world experience can bridge the gap between the
onscreen experience and the data it represents.

These two GUIs are examples of drawing on experience outside of
MATLAB to enrich understanding within it. On the left, we’re looking at
the spectral analysis of the tones generated by a touch-tone phone
(filename phone.m, from the Signal Processing Toolbox). The upper plot
shows the sound waveform, and the lower plot shows the spectral
content. To generate the tone, we use a representation of the phone
touch-tone keypad itself.

The figure on the right shows a demonstration of the traveling salesman
problem (filename travel.m), which goes like this: Given a list of cities
to be visited, what route between them results in the shortest overall
trip? In this demo, the cities are really just random points on the plane.

The touch-tone phone pad in the example on the left and the outline of the U.S.
in the example on the right both provide some familiar context for the GUI.
2-8

Design Principles
But by superimposing an outline of the United States, this mathematical
curiosity suddenly feels more relevant.

The GUI shown above illustrates the MATLAB random number
generator by simulating the tossing of a coin. The image of a penny in the
upper left part of the figure emphasizes the content of the two plots (a
histogram and a history plot). Familiarity draws people into the GUI and
makes them feel comfortable.

The Dynamic Interface
Much of what we’ve discussed so far is biased by the static world of
graphic design. But the world mediated by the computer is a dynamic
one, and there are a few more key words to mention. Where you act using
the GUI, your actions should be: Immediate, Continuous, and Reversible.

Permit Direct Manipulation Whenever possible, let the user grab the
data as though it were a solid object.

A photograph of a penny in this demo
helps communicate the basic nature of
this statistical experiment.

Immediate

Continuous

Reversible

snappy
direct

encouraging

smooth
physical

friendly
2-9

2 GUI Design
With respect to immediacy and continuity, calculation time is the most
important consideration. If you can make a calculation and display the
result instantly, by all means do so. But if calculation time is significant,
you may be better off using a button to invoke the action.

In the example above (file name sigdemo2.m in the Signal Processing
Toolbox), the cursor is shown in the upper plot dragging a waveform. The
Fourier transform of the signal is instantly updated in the lower plot.
The result is an insightful illustration of the relationship between a
signal and its Fourier transform.

The GUI above shows the lift generated by an airfoil as a function of
angle of attack. If you click anywhere on the lift curve, the airfoil on the
right side immediate rotates to the selected angle and the lift arrow
shows the magnitude of the lift generated. You can also set the angle of
attack by clicking on the wing and rotating it to a new angle. This kind
of immediacy and continuity promotes quick learning and a high degree
of interaction.

Finally, reversibility is most often embodied by the Undo menu. Undoing
is sometimes difficult to implement, but it’s always appreciated by users.

The fact that you can “grab” the line
in the top part of this GUI and instantly
see its Fourier transform in the bottom
greatly enhances the GUI’s value.

In this demo, you can change the angle
of attack of the airfoil by literally grabbing
the wing and rotating it. The corresponding
lift shows up as a vector and a call-out on
the lift plot.
2-10

Design Principles
A well-built undo capability encourages experimentation and a sense of
comfort in working with your GUI.

Keep It Simple
Lists of design guidelines grow quickly, and they can eventually obscure
the very ideas they were meant to promote. Remember to learn from
GUIs that you like, and when it doubt, keep it simple.

? ! Keep it

SIMPLE
2-11

2 GUI Design
Design Process
In this section, we suggest a road map for creating GUIs in MATLAB.
Like everything associated with design, this really amounts to some
suggestions about how to think, rather than a step-by-step recipe. It’s
helpful to think about the GUI creation process as breaking into a design
phase and an implementation phase. This concept is illustrated in the
diagram below.

This is the most important fact presented in this chapter: complete the
design of your GUI before you begin to implement your GUI.

Don’t Start Coding Until You’re Done Designing If you start working
on the implementation too soon, you tend to converge much slower on a
final design.

Of course the design may change once you start coding, and there may
well be design decisions that you can’t properly make until you’ve written
some code. Still, take the design part just as far as you can on paper,
because you are guaranteed to save yourself a lot of time.

Notice the arrows in this diagram point in both directions—sometimes
you move forward and sometimes back. In fact, some have drawn this
diagram as a spiral, noting that inevitably your first design needs to go
through the whole process multiple times.

Define TaskSTART

STOP

Design Implementation

Draw GUI
Test Design

Write Code
(use Guide)

Test Code
2-12

Design Process
Start with the Ideal Don’t make compromises too soon. The best final
designs grow from an idealized initial vision.

The ideal design is something that exists in your head after you’ve spent
a long time thinking about the task and the user. This design might be
expensive in terms of development effort or computing power required.
But for whatever reason, it’s the best way to approach the task. Think of
it as a three-dimensional shape that must now be projected down into the
two dimensions of the final (and achievable) implementation. If you start
out with the merely achievable, the final result will be half-hearted. If
you start with the ideal, it’s often surprising what you can make the
technology do for you.

Test the GUI on Paper Drawing and testing your GUI on paper keeps
you and any testers from over-focusing on the detailed aspects of the
GUI.

Early on in the design process, there’s no point in playing with font sizes
and button colors. What matters is overall behavior and appearance of
the GUI. Paper prototyping is a good exercise for keeping things in
perspective. The idea is to build your entire interface out of paper and try
it out. Since there’s no code involved, you play the role of the computer
while a cooperative user sitting across from you performs a task. It’s an
excellent way to see if the GUI does what you (and the user) want it to do.

Paper prototyping: these are still video-images from paper prototype
usability testing at The MathWorks. Notice the simulated “watch” cursor
in the rightmost image.
2-13

2 GUI Design
Paper prototyping tests the thoroughness of your design and can resolve
disagreements about tough design questions that might otherwise be
intractable.

By the time you’re ready to start writing code, you should have a
complete diagram or set of diagrams of the GUI (the layout) and an exact
description of what functionality is associated with each part of the GUI
(the callbacks). Actually, the term “write the code” is somewhat
misleading now that Guide is available to make your job easier. Part of
the coding process is about building up the GUI with MATLAB
components like uicontrols and axes, putting everything in the right
place. You can either do this directly with pages of initialization code that
look like this.

uicontrol('Style','pushbutton', ...
'String','Plot', ...
'Callback','plot(x,y)', ...
'Units','point', ...
'Position',[50 65 75 35])

or you can use Guide (MATLAB’s GUI Development Environment).
Guide is described in more detail in Chapter 3, but the basic idea is that
it lets you do all your layout graphically.

As shown in the illustration above, even after you’ve used Guide to get
the layout right, you still need to write the MATLAB language callbacks.

plot(x,y)
Callback

Load
load mydata;
x=XYData(:,1);
y=XYData(:,2);

Callback

Plot

close(gcbf)
Callback

Close

Guide helps
you put all the

elements in
place

You still need to
manage what
happens when
the button gets
pushed

Layout
Callbacks

Figure 1
2-14

Design Process
A Complete Example: Precipitation Files
In this section we go through the design process from beginning to end,
noting each step along the way. One thing that becomes obvious when
you start to work with a real example is how much the different tasks on
our process checklist spill into each other. In this example, the process
breaks into three natural clusters.

We want to use MATLAB to view weather data that we found on the net.
Specifically, these files are monthly precipitation datasets available from
the US National Climatic Data Center (http://www.ncdc.noaa.gov) as
part of the NCDC digital database TD3220.

1. Define the Task—Draw the GUI
The task is still somewhat vague, and surprisingly enough this is often
the case in real world examples. You don’t always know what you’re
looking for until you start to draw up some scenarios. Here is an excerpt
from the .prp precipitation data files we want to plot:

We have the .prp files for a number of different cities. We want to select
the data file for a given city and see a plot of the monthly precipitation
figures. Here’s simple illustration of what we want to do.

NUMBER LOCATION STATE YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANNUAL
190770 BOSTON LOGAN INTL AP MA 1948 511 208 314 262 537 450 453 124 67 484 516 125 4051
190770 BOSTON LOGAN INTL AP MA 1950 386 381 299 238 155 110 145 314 89 199 617 337 3270
190770 BOSTON LOGAN INTL AP MA 1951 404 371 441 306 481 431 213 323 200 398 660 469 4697
190770 BOSTON LOGAN INTL AP MA 1952 431 471 441 441 357 326 52 686 113 161 172 409 4060
190770 BOSTON LOGAN INTL AP MA 1954 326 337 333 525 1338 278 250 564 831 358 552 540 6232
...

Figure 1

Boston
rain

Chicago
rain

SF
rain

Choose a
data file

Selectively
view individual
curves

Parse and
plot data

1

2

3

2-15

2 GUI Design
The Task. Select a .prp precipitation file for a given city and interactively
view the rainfall figures for each year in that file. Here is sketch number
one.

All the .prp files in the current directory are displayed in the listbox on
the right. Click on the file listbox and the data for that file are read into
a MATLAB variable and plotted in the axes on the left. This is a good
start, but we want a way to choose individual years from the list
associated with any given location. Here’s another sketch that takes that
into account.

Plot of the yearly
rainfall data for a
given file
(Rainfall Plot)

List of all *.prp
files in the
current directory
(File Listbox)

Rainfall PlotFile Listbox

List of all years
for a given file
(Year Listbox)
2-16

Design Process
We’ve purposely left in some of the scribbled annotations from these
sketches so you can see how the design truly proceeded. Here are some
observations about what we’ve got so far:

• The first thing we have to do is select a city file, so it makes sense to
keep that on the left, since we’re used to reading from left to right.

• For symmetry and separation of the listboxes, let’s move the year
listbox to the right side (where the file listbox started out in sketch
number one).

• Some extra options at the bottom of the figure would be nice. For
instance, we almost always want to include a Close button and a Help
button.

• Another nice option would be to plot the average rainfall for the
selected city in the Rainfall Plot, along with the ability to turn it off
and on with a checkbox.

• We can also add a Select All Years button and a Deselect All Years
button.

Notice how fluid the design is at this point. Move elements all over the
place, test them in your mind, try to see what works. By adding the
Average Rainfall option, we’ve expanded on the original task, too. Here’s
sketch number three, our latest effort. Now we have a reasonable
drawing of what the GUI is going to look like. We’re not done with the
design until we know exactly what each part of the interface will do. Here
are the procedures for each of the objects.

Rainfall Plot

File Listbox

Year Listbox

Help

Close

Show Average

Select All

Deselect All
2-17

2 GUI Design
File Listbox. Identify the selected file, parse it and load the data into
MATLAB, put the year list into the Year Listbox and plot the rainfall
data for all years.

Year Listbox. Identify the year selected, and select that line in the Rainfall
Plot and deselect all others.

Rainfall Plot. If a line is clicked on, select it, deselect all other lines, then
select the appropriate year in the Year Listbox.

Show Average. This is a checkbox that toggles the visibility of the average
rainfall line.

Help. Open a dialog box with some help text in it.

Close. Close this figure.

Select All, Deselect All. Either select or deselect all of the curves in the
Rainfall Plot. On further consideration, these buttons don’t seem very
useful. What’s the value of selecting every last curve? Let’s remove these
buttons.

This is our candidate for implementation. Does it meet the criteria set
forth in the task? In other words, if we were to test it against our task,
would we be happy?

2. Draw the GUI—Test the GUI
Testing the GUI doesn’t mean writing code first. It means looking at
what you’ve drawn, putting yourself in the place of the user and seeing if
this satisfies the task. This is the stage where we might try building a
2-18

Design Process
paper prototype of the GUI to see if it holds up well. Shown below is a
recap of the task with a cleaned up version of our GUI drawings.

Armed with our knowledge about what each control on the figure does,
we can perform a few tests first with ourselves as the subject, then with
an office mate or someone down the hall, and finally, if we’re serious
about doing the best possible job, with real customers.

3. Write the Code—Test the Code
The design is now complete. Since GUI layout and callback writing is the
subject of the next chapter, we have reached the end of this example.
Here’s what rainfall GUI looks like after using Guide to lay out the
figure.

Figure 1

Show Average Help

boston.prp
chicago.prp
sfo.prp

1974
1975
1976
1987
1990

YearsFiles

Close

Choose a
data file

Selectively
view individual
curves

Parse and
plot data

1

2

3

This is the GUI, built up with Guide,
that represents the final implementation
of our design.
2-19

2 GUI Design
2-20

Handle Graphics and the Property Editor 3-3
The Property Editor 3-3

GUI Layout with Guide 3-9
The Control Panel 3-10
The Property Editor 3-12
The Callback Editor 3-12
The Alignment Tool 3-14
The Menu Editor 3-15
A Complete Example 3-16

Writing Callbacks 3-25
Layout vs. Callbacks 3-25
Callback Tips . 3-25

A Complete Example: Temperature Conversion 3-35
3

GUI Implementation

Introduction . 3-2

3 GUI Implementation
Introduction
This chapter is about the second half of the GUI creation process:
implementing the GUI with MATLAB code. We assume here that you already
have a good idea of what you want to build, and now you need to know the
specifics about to build it.

We start off with a quick introduction to some Handle Graphics® basics and
how to use the Property Editor. The rest of the chapter divides into two parts:
how to use Guide to lay out a GUI, and how to write the callbacks that do the
work behind the scenes.
3-2

Handle Graphics and the Property Editor
Handle Graphics and the Property Editor
Anything that appears in a MATLAB figure is an example of Handle Graphics,
because every object on the screen has a unique identifier, called a handle, that
allows you to go back and modify the object at any time. Generally there’s no
need to worry about the handles, but they’re always there. Shown below is a
diagram of the Handle Graphics object hierarchy. These are all the categories
of object types in MATLAB.

The Property Editor, one of the Guide tools, is extremely useful for navigating
the Handle Graphics hierarchy. If you need to get or set any Handle Graphics
property on any object, chances are you can do it most easily with the Property
Editor.

The Property Editor
Let’s step through an example of using the Property Editor just to get the feel
of how it works. Try this:

surf(peaks(25))
propedit(gcf)

Remember that gcf, which stands for “get current figure,” returns the handle
of the current figure window. If you’re uncertain about functions like gcf, get,
and set, read the manual Using MATLAB Graphics. The function peaks(25)
returns some sample data in a 25-by-25 matrix. Now we know that the
command

set(gcf,'Color','red')

Root

Figure

Uicontrol

Image

Axes

Line

Uimenu

Patch Surface Text Light
3-3

3 GUI Implementation
will turn the background of the figure red. Since color can also be specified by
RGB (red, green, blue) triplets, the command

set(gcf,'Color',[1 0 0])

does just as well.

Let’s take a look at how we would achieve the same effect using the Property
Editor. Below the label figure (#1) in the Property Editor there is an editable
text field. This is known as the Property Field. Enter the word Color there and
press the Return key. The RGB value for the default figure background color
appears in the editable text field just to the right of it. This is the Value Field.
These two text fields let you edit the Property-Value pairs for any object in
MATLAB. To make the figure background red, enter the word 'red' in single
quotes in the right-hand, or Value Field as shown in the next figure, just the
way you would with the set command.

That’s the quickest possible introduction to the most versatile of the Guide
tools, the Property Editor. Remember, anything you can view or modify with
the set and get commands, you can view or modify with the Property Editor.
Notice that what you type into the Value Field is the same thing you would type
on the command line. So could also enter [1 0 0] in the Value Field, and the
result would be exactly the same.

Using the Property List
One drawback with the Property Field is that you have to know the name of
the property you want to change. Suppose you want to label this figure, but you

Value FieldProperty
Field
3-4

Handle Graphics and the Property Editor
don’t know the property name that does the right thing. Is it Label or Name?
Click on the checkbox marked Show Property List and the Property Editor
changes shape so that it includes a listbox with all the properties of the current
object displayed.

You can now scroll through all of the properties until you find the one that looks
right: Name. Here we’ve entered the name 'Red Peaks', so now that name
appears in the title bar of the figure window.

Some properties, such as the Visible property, can be set to one of only a few
possibilities. In the case of Visible, since the only two options are yes and no,
the Value Field is replaced with a pop-up menu. In other words, the Property
Editor is anticipating the fact that you only get to choose between two things.

Using the Object Browser
Just as you typed propedit(gcf) to edit the figure, you can also type

propedit(gca)

Value
Field

Checking this
box opens the
Property List

Property
Field

Property
List
3-5

3 GUI Implementation
to edit the current axes. There can only be one Property Editor open at a time,
so if you already had it pointing at the current figure, then it just gets
redirected at the current axes.

The Property Editor, Callback Editor, and Alignment Tool all include an Object
Browser. The Object Browser shows you hierarchically the name and selection
state of every object on screen. The Object Browser allows you to expand and
collapse the hierarchy of objects starting with the root. A plus sign (+)
preceding an object indicates that the object has children and that the
hierarchy can be expanded. A minus sign (-) also indicates that an object has
children and that the hierarchy can be collapsed. If an object has neither a plus
nor minus sign, then the object has no children and so cannot be expanded or
collapsed.

A sample Object Browser is shown below. The left column of the Object
Browser lists the object type and the right column lists the tag.

Object Browser

Checking this
box opens the
Object Browser

Root

Figure

Uicontrol

Image

Axes

Line

Uimenu

Patch Surface Text Light

Notice the correspondence between the
Handle Graphics hierarchy and the
indentation level on the Object Browser
3-6

Handle Graphics and the Property Editor
You can use the Property Editor with both the Object Browser and the Property
List visible.

Secrets for the Power User
The Property Editor is the Swiss Army knife of MATLAB graphics. Here are
some tips for maximum efficiency usage.

• Multiple selection. Multiple objects, even multiple objects of widely
varying types, can be queried and modified together. For instance, if you use
the Object Browser to select a line and a listbox, only the properties in
common are displayed. You can set the Visible property to off and both will
disappear.

• Command completion. If a figure has been selected, you can type the let-
ters “col” in the property field (and press Return), and the Property Editor
is smart enough to know that Color is the only possible completion. This
saves huge amounts of typing.

• Truncation. The property field ignores anything after the first space. So if
you type into the beginning of the text field, press space and return, the old

Value
Field

Object
Browser

Property Editor

Property
List

Property
Field
3-7

3 GUI Implementation
text is ignored. This helps with “hands on keyboard” editing, because it mean
you don’t have to select the old text with the mouse and then erase before
typing in the new value.
3-8

GUI Layout with Guide
GUI Layout with Guide
Guide simplifies the creation and manipulation of Handle Graphics objects.
This means that:

• It simplifies access to the properties of Handle Graphics objects.

• It lets you place and arrange GUI elements on a figure by clicking and drag-
ging with the mouse.

Specifically, Guide consists of five MATLAB tools that offer a streamlined
approach to working with MATLAB figure windows.

The Guide tools are the Control Panel, the Property Editor, the Callback
Editor, the Alignment Tool, and the Menu Editor. Each tool performs a distinct

The Menu
Editor

The Alignment
Tool

The Callback
Editor

The Control Panel

The Property
Editor
3-9

3 GUI Implementation
task and also is aware of and interacts with other tools. You can open each
Guide tool by entering one of these commands at the MATLAB prompt.

• guide (for the Control Panel)
• propedit (for the Property Editor)

• cbedit (for the Callback Editor)

• align (for the Alignment Tool)

• menuedit (for the Menu Editor)

The Control Panel
The Control Panel is divided into three parts.

• The Guide Tools List, for launching individual tool

• The Guide-Controlled Figure List, for controlling and activating figures.

• The New Object Palette, for adding axes and uicontrols to a figure.

The Control Panel

Buttons for

Guide-Controlled
Figure List for

New Object
Palette for adding
axes and uicontrols

activating and
controlling figures

launching the
Guide tools
3-10

GUI Layout with Guide
There are nine different kinds of uicontrols that can be added:

• Push buttons

• Radio buttons

• Checkboxes

• UI editable text

• UI static text

• Sliders

• Frames

• Listboxes

• Pop-up menus

Controlling and Activating the Figure
Within the context of Guide, all MATLAB figures are either controlled or
activated. The “normal” state of a figure is the activated state. In other words,
everything is working just as expected: push buttons push, and pop-up menus
pop. But if you want to relocate your push button from one side of the figure to
the other, you need to put the figure into an editable, or controlled state. A
figure is automatically controlled by the Control Panel whenever you type
guide from the command line.

Figure 1

Plot

Figure 1

Plot

Guide Control Panel

Guide Controlled Figure Listclick

Refresh Add Apply

Figure 1

Plot

Active #1

Guide Control Panel

Guide Controlled Figure List

click

Refresh Add Apply

Controlled #1

Guide Control Panel

Guide Controlled Figure List

Refresh Add Apply

Controlled #1

To take control of a figure
with Guide, click on the
appropriate line of the
Guide-Controlled Figure List...

... then click on the Apply
button (alternatively, you can
double-click on the listbox).

Now the figure is listed as
controlled by Guide. The Apply
button is disabled.
3-11

3 GUI Implementation
To take control of an existing figure, click on that figure’s name in the
Guide-Controlled Figure List, and then click on the Apply button. White grid
lines provide a visual clue to remind you that a figure is currently controlled.
A controlled figure means you can do the following.

• Select uicontrols and axes by clicking on them

• Move uicontrols and axes by clicking and dragging them

• Create and delete uicontrols and axes

You can even control more than one figure at a time, if desired. When you are
finished making changes to the GUI, click once on the appropriate line of the
Guide-Controlled Figure List in the Control Panel. The Figure List
acknowledges that you are requesting that a figure be activated. All you need
to do is click on the Apply button and the figure is activated.

All Guide tools are useful with both active and controlled figures. This means
you can set the background color on a figure regardless of whether it’s currently
controlled by Guide.

The Property Editor
For a full discussion of the Property Editor turn to the previous section “Handle
Graphics and the Property Editor.”

The Callback Editor
The Callback Editor lets you modify the callbacks of selected objects. You can
change multiple lines of code at once using the Edit Box. The Edit Box also
makes it easier to enter Handle Graphics code because it allows you to omit
nested quotes and enter code on multiple lines. You can initialize the Callback
3-12

GUI Layout with Guide
Editor by entering cbedit from the MATLAB prompt, or by clicking on the
appropriate button in the Control Panel.

You can use the Callback Editor to make changes to any figure. For example,
you might want to change the ButtonDownFcn for a figure display the current
figure handle.

Begin by selecting the Show Object Browser check box to display a list of
objects. Select the property you want to modify, in this case the ButtonDownFcn.

Select the Apply push button when you have finished making changes. If you
click in the figure now, it displays the current figure in the MATLAB
workspace.

Object
Browser
Check box

Edit Box

Object
Type

Object
Tag

The Callback Editor

Callback

Edit Box

Object
Browser
Check box

Object
Browser

Callback Editor

Type Pop-up
Menu
3-13

3 GUI Implementation
The Alignment Tool
The Alignment Tool allows you to align selected objects using a collection of
vertical and horizontal alignment or distribution push buttons. In the past, you
needed to know and specify the exact location of any object that you wanted to
move using complicated Handle Graphics commands. Now you can move
objects relative to each other or distribute the gaps between objects in a single
step.

You can open the Alignment Tool by entering align from the MATLAB prompt
or by clicking on the appropriate button on the Control Panel.

Alignment Tool Features
• The vertical alignment or distribution push buttons do the following: align

by top, align by middle, align by bottom, distribute top-to-bottom, and set
explicit spacing.

• The horizontal alignment or distribution push buttons do the following: align
by left, align by middle, align by right, distribute left-to-right, and set
explicit spacing.

Alignment and distribution always leave the affected objects inside the
imaginary box that originally bounded them.

Object
Browser

Alignment Tool
3-14

GUI Layout with Guide
The Menu Editor
Use the Menu Editor to add and edit the user-created pull-down menus
associate with a figure. The menus you create with the Menu Editor are in
addition to the basic menus that normally belong to a figure (File, Edit,
Window, Help). As far as Guide is concerned, those four system-level menus
are invisible and unreachable. It is possible to hide the four system-level menus
by setting the MenuBar property of the figure to none.

The Menu Editor does not display the new menu until the figure has been
activated.

Menu Editor

Use the four menu
Object
Browser

hierarchy buttons
to promote and
demote menu
items.
3-15

3 GUI Implementation
A Complete Example

Here is a GUI that lets you modify the colormap and background color of a
figure window and to change what is being plotted. Let’s use Guide to build it
from scratch. This example touches on all the major aspects of Guide.

Type guide at the MATLAB command line. A new figure and the Guide Control
Panel will appear. Press the axes button on the Control Panel and select an
area on the controlled figure.

Uimenu

Aligned
buttons

Listbox

Editable text
3-16

GUI Layout with Guide
After repositioning the axes and resizing the figure, add a listbox uicontrol by
selecting from the Edit/Add Object/listbox menu on the Controlled Figure or by
selecting it on the Control Panel and then dropping it on the figure. Add an
editable text box below it as shown here.

Click here to create a new axes.

First add a listbox... ... then add an editable text box.
3-17

3 GUI Implementation
Next, left-align the listbox, the edit box, and the axes. You can do this with the
Alignment Tool, but first open the Property Editor. You can open the Property
Editor one of three ways:

• Select all three objects, then double-click on one of the selected objects.

• Click on the Property Editor button on the Control Panel.

• Use the Tools menu on the controlled figure.

Once open, type the letters pos in the Property field on the left side of the
Editor and then press the Tab key. Command completion puts the word
Position in the Property Field and [? ? ? ?] in the Value Field.

Question marks are used when multiple objects are selected and the given
position values for the objects are not equal. You now have the option of doing
one of two things to align the selected objects to the left. You can either replace
the first question mark in the Property Editor Value Field with a number or
you can use the Alignment Tool.

To use the Alignment Tool, open it from the Control Panel or from the Tools
menu on the controlled figure. Once open, click on the Align Left button on the
Alignment Tool. Press the Apply button and your GUI should now look like the
figure on the right.
3-18

GUI Layout with Guide
The three objects are aligned to the left side of the bounding box that encloses
them.

Next, add the push buttons to the figure. Add a push button to the figure and
copy it twice. Next, select all three buttons and look at their positions in the
Property Editor. We want their widths and heights to be equal, so enter
[? ? 75 25] in the value field for the Property Editor.

This is the
Align Left
button
3-19

3 GUI Implementation
Next, we want to align the buttons to the right side of the axes and distribute
the space between the buttons. When finished, the controlled figure should look
like this.

We’re now done laying out the figure, so activate it and then continue to use
the Callback Editor and Menu Editor. To activate the figure, click on the
Controlled Figure List listbox on the Control Panel to get figure #1 to indicate
--> Active, then press Apply. Make sure to save the figure when prompted.

Go back to the Property Editor. The root is now listed in the Object Browser,
along with any other figures that may exist. This is because the Guide tools are
no longer looking at just the list of controlled figures; all graphics objects are
visible to them now.

Our goal is to put labels on the three push buttons and the edit box and then
to add the string to the listbox. Use the Property Editor to put the strings
mesh(z), surf(z), and pcolor(z) on the buttons. To add a multiline string to
the listbox, first create a cell array in the base workspace. You can do this by
entering

cmaps = {'hsv';'hot';'gray';'prism';'cool';'winter';'summer'};

at the MATLAB command line. This is a list of just a few of the colormaps that
are available. Next we need to select the String property for the listbox in the
Property Editor. For the value, enter the string cmaps without quotes around
it. This retrieves the variable cmaps from the workspace. When you apply this
value, the edit field shows the string towork, which is now a variable in the

All the GUI elements are
in place, so you’re ready
to activate the figure.
3-20

GUI Layout with Guide
workspace equivalent to the variable cmaps. towork is used whenever the value
for a property has more than one line. The listbox now contains the correct
string.

Now use the Callback Editor to assign the callbacks to the push buttons and
listbox. The Property Editor would also work, but since our callbacks are more
than one line, it’s easier to use the Callback Editor. First, select the listbox in
the Object Browser and then select the Callback property.

Enter the callback as shown above. The first line of the callback gets the value
for the current callback object, which will be the listbox. The second line of the
callback gets the listbox’s string. It should be noted that the string returned by

The callback:

Value = get(gcbo,'Value');
String = get(gcbo,'String');
colormap(String{Value})
3-21

3 GUI Implementation
this get command is a cell array because it was entered into the listbox as a
cell array. Finally, set the colormap of the figure to be the current selection in
the listbox.

Now we want to set the callback for all three push buttons. As before, select the
three push buttons, then select the Callback property and then enter the string
as shown below.

This callback does the following:

1 Get the plotting command to be executed from the string of the push button.

2 Find the handle to the edit box using findobj and the Tag assigned by Guide
(EditText1). The Callback Editor lists the current Tag setting as the last
string in the property list.

3 Get the string from the edit box.

4 Evaluate the string for the edit box.

5 Evaluate the plotting command.

The GUI should now be functioning. Before we test it, go to the File menu on
the figure and select Save... You can now test to see that the GUI works.

The last step is to add some menus to the figure to allow control over the color
of the figure with the Menu Editor. Open the Menu Editor, select the figure in
the Object Browser and click on New Menu. Enter 'Options' for the Label for

The callback:

CommandString = get(gcbo,'String');
EditHandle = findobj(gcbf,'Tag','EditText1');
ZString = get(EditHandle,'String');
eval(ZString);
eval(CommandString);

CommandString=get(gcbo,'String');
EditHandle=findobj(gcbf,'Tag','EditText1');
ZString=get(EditHandle,'String');
eval(ZString);
eval(CommandString);

Property list shows Tag
3-22

GUI Layout with Guide
the menu and then click on New Menu again to place a sub-menu below the
Options menu.

Label this menu Color and then click on New Menu a third time. This new
menu has a Label of 'white' and a callback of
'set(gcbf,''Color'',''white'')'.
3-23

3 GUI Implementation
You can now add additional menus as desired. Again save the figure and test
out your GUI. The final result should be similar to the figure below.
3-24

Writing Callbacks
Writing Callbacks

Layout vs. Callbacks
Just as building GUIs divides into design and implementation, so does the
implementation part divide into screen layout (typically using Guide) and
callback handling. This is the difference between how the screen looks versus
what it does when you interact with it.

Happily, using Guide means that you’ll never again have to write code that
looks like this:

uicontrol('Style','pushbutton', ...
'String','Plot', ...
'Callback','plot(x,y)', ...
'Units','point', ...
'Position',[50 65 75 35])

In other words, it’s possible that Guide is all you need to build your GUI, but
chances are you need to write some more support code. Using Guide, you keep
all your layout changes in the figure file. This is nice because it separates the
graphic design part of building the GUI from the callback coding part.

Callback Tips
As part of your GUI design, you typically produce a good description of how the
GUI should behave. Even if you have experience coding in MATLAB, it can still
be tricky to get the callbacks working robustly and efficiently. In this section,
we walk through a collection of callback coding tips that you might use in your
GUIs.

plot(x,y)
Callback

Load
load mydata;
x=XYData(:,1);
y=XYData(:,2);

Callback

Plot

close(gcbf)
Callback

Close

Guide helps
you put all the

elements in
place

You still need to
manage what
happens when
the button gets
pushed

Layout
Callbacks

Figure 1
3-25

3 GUI Implementation
Function Callbacks Are Faster Callbacks that consist of long strings to
evaluate execute more slowly than callbacks that are short function names.

The code that you put in the callback string for any uicontrol gets evaluated
when that uicontrol is activated. You can put a long string of commands
directly into the callback. For instance, suppose you have a mini-GUI that
loads some data (mydata.mat) into the workspace, then plots it, as shown in the
previous figure.

For speed, robustness, and ease of coding, you should make all of your callbacks
functions. The code is faster because functions, once loaded and “compiled” by
the interpreter, run much faster, whereas the evaluated strings get parsed
anew every time. The code is easier to read and write because you don’t have to
double up quotes (though the Callback Editor alleviates the need to double up
quotes). The code is more robust because it executes in the function’s
workspace, as opposed to the callback string, which gets executed directly in
the base workspace where it can collide with other data. In this example,
XYData gets deposited in the workspace every time you push the button. Here
is the same application with functional callbacks.

Notice we have to modify the callbacks to handle the workspace issue. In the
function’s workspace, we can’t simply say plot(x,y), because the function
doesn’t know what x and y are. One way to deal with this is to store the data in
the UserData property of the figure for later retrieval, as shown here.

myplotfcn
Callback

myloadfcn
Callback

Load

Plot

myclosefcn
Callback

Close

function myloadfcn
load mydata;
set(gcbf,'UserData',XYData)

Function on disk

function myclosefcn
close(gcbf)

Function on disk

function myplotfcn
XYData=get(gcbf,'UserData')
x=XYData(:,1);
y=XYData(:,2);
plot(x,y)

Function on disk

Figure 1
3-26

Writing Callbacks
Switchyard Programming Prevents Function Proliferation Send all the
callbacks of your GUI to one single function with a switch statement so there
won’t be a separate function for every callback.

Separate functions for each callback can lead to a lot of files to support one
GUI. For reasons of maintainability and ease-of-coding, we’re better off putting
all those into a single function as shown below. This approach, known as
switchyard programming, keeps all the code associated with figure callbacks in
one centralized place. If your GUI uses one figure file (and its associated
MAT-file) and one callback function like the one below, you need to keep track
of only three files per GUI.

Use gcbo and gcbf for Self-Referential Callbacks If your callback needs to
know about or modify its own state or the state of its parent figure, the
functions gcbo and gcbf are short and convenient.

There are several special handles that make writing callbacks much easier.
They all involve grabbing the current handle of a certain type: gcbf (Get
Callback Figure), gca (Get Current Axes), gcbo (Get Callback Object). These

mygui plot
Callback

mygui load
Callback

Load

Plot

mygui close
Callback

Close

function mygui(action)

switch(action)
 case 'load',
 load mydata;
 set(gcbf,'UserData',XYData)
 case 'plot'
 XYData=get(gcbf,'UserData')
 x=XYData(:,1);
 y=XYData(:,2);
 plot(x,y)
 case 'close'
 close(gcbf)
end

Function on disk

Figure 1
3-27

3 GUI Implementation
are all simple functions that use the Handle Graphics hierarchy to grab the
correct handle. Try this:

This button has a callback that makes its own string equal the time of day. You
can think of the gcbo function as being loosely translated to “me.” So in this
example the button is saying: “when I get clicked, make my label equal to the
time of day.” The datestr function, operating on the output of the now
command, has many formatting options, and option 14 corresponds to
HH:MM:SS PM.

Stateless Programming with findobj If you use the findobj function to locate
an object whenever you need to modify it, you can often eliminate the need for
redundant state variables.

The command findobj returns the handle of an object that matches the
description (a list of property name/property value pairs) you give it. Since
findobj allows you to find any object in the entire Handle Graphics hierarchy
quickly and easily, you can find the handle associated with a line, for example,
only when you need it, rather than having to remember it from the moment you
created it. Here’s the old way of dealing with handles:

lineHandle = plot(rand(10,1))
% Remember that handle!
... [lots of other code here] ...
set(lineHandle,'LineWidth',4,'Color','red')

If the handle gets lost, cleared, or goes out of scope between the first statement
and the last, then you either cause an error or you must regenerate the plot
from scratch. There are several strategies we might use to keep from losing

set(gcbo,'String',datestr(now,14));
Callback

Figure 1

10:49:52 AM

Figure 1

click
10:47:18 AM

Self-referential callbacks:
An object’s callback can
be used to modify the
object itself.
3-28

Writing Callbacks
track of lineHndl, but they all have drawbacks. You can use a global variable
(though this is discouraged) or you can store the handle in UserData
somewhere in the figure. All of these mean keeping track of redundant state.
In addition, the handle may change if the figure is stored and reloaded, and if
you use saved figure files, then you don’t have access to the object handles at
creation time.

Here’s how the same example works with findobj.

plot(rand(10,1),'Tag','My Line')
% Don't even bother with the handle yet; just give it a Tag
... [lots of other code here] ...
lineHandle = findobj('Tag','My Line');
set(lineHandle,'LineWidth',4,'Color','red')

You can use findobj to search for any property name/property value
combination, but the Tag property is generally the easiest one to use. You can
think of the Tag field as an invariant handle that you get to designate. In the
example below, the button’s callback needs to determine the state of the
checkbox before it can finish its work. This is an good example of when findobj
is useful.

One word of warning concerning findobj: since findobj searches through the
object hierarchy every time it’s called, you may find it too slow for some
purposes. In cases where speed is essential (such as WindowButtonMotion
loops, which are discussed later in this section), you may want to store handles
in the figure’s UserData or in global variables.

gridHndl=findobj(gcbf, ...
 'Tag','GridFlag');
plot(x,y);
if get(gridHndl,'Value'),
 grid on;
else
 grid off;
end

Callback

GridFlag
Tag

Plot

Grid On

Figure 1

X

click
Here the button is
modifying its action
based on a setting
somewhere else in
the figure (the grid
check box)
3-29

3 GUI Implementation
Avoid Potential Errors by Disabling Uicontrols If a callback is likely to cause
an error if invoked at a certain time, set the Enable property on the calling
object to off.

In the example below, the top button loads the data, and the middle button
plots it. If the middle button is clicked on first, an error results, because the
data will not yet be in the UserData. Avoid this problem by disabling the Plot
button initially (set its Enable property to off), and then using the Load
button’s callback to re-enable it.

Use Subfunctions Inside the Switchyard Callback Another good way to keep
the callback function clean is to route common functionality into a subfunction
in the same file.

In this example, we’ve decided we want to plot at two different times, both
when the Plot button is pushed, and when the data is loaded by the Load
button. Rather than duplicate the code, we just create a new function in the
same file called LocalPlotFcn. This function is then executed in each button’s

myplotfcn
Callback

myloadfcn
Callback

Load

off
Enable

Plot

myclosefcn
Callback

Close

function myloadfcn
load mydata;
set(gcbf,'UserData',XYData)
plotHndl=findobj(gcbf, ...
 'String','Plot');
set(plotHndl,'Enable','on')

Function on disk

function myclosefcn
close(gcbf)

Function on disk

function myplotfcn
XYData=get(gcbf,'UserData')
x=XYData(:,1);
y=XYData(:,2);
plot(x,y)

Function on disk

Figure 1
3-30

Writing Callbacks
callback. As the complexity of your callback function rises, this kind of thing
becomes very valuable.

Don’t Forget About the ButtonDownFcn Everything from a line to a figure
has a ButtonDownFcn. Use these and other special callback functions to give
your GUI more leverage.

Callbacks from uicontrols are not the only way to run code from a GUI. Making
appropriate ButtonDownFcns for lines, text, and axes in your GUI is one of the
most powerful ways to make it interactive. It also alleviates the need for lots
and lots of uicontrols.

mygui plot
Callback

mygui load
Callback

Load

Plot

mygui close
Callback

Close

function mygui(action)

switch(action)
 case 'load',
 load mydata;
 set(gcbf,'UserData',XYData)
 LocalPlotFcn
 case 'plot'
 LocalPlotFcn
 case 'close'
 close(gcbf)
end

function LocalPlotFcn
% This is a subfunction

XYData=get(gcbf,'UserData')
x=XYData(:,1);
y=XYData(:,2);
plot(x,y)

Function on disk

Figure 1

set(gcbo,'LineWidth',10-get(gcbo,'LineWidth'))
ButtonDownFcn

Figure 1 Figure 1

click

Figure 1

click Use the ButtonDownFcn
to toggle the
LineWidth on a
line.
3-31

3 GUI Implementation
The figure has a number of event functions specific to it, including the
ResizeFcn and the KeyPressFcn. Use the Callback Editor to browse around
and see what callback functions are associated with what objects.

Prevent Overplotting with Handle Visibility The HandleVisibility property
lets your hide your GUI from the MATLAB command line so it can’t be
tampered with.

The HandleVisibility property (with value settings on, off, and callback)
has been added so that regular plotting commands act as though an object
doesn’t exist.

>> plot(x,y)

off
HandleVisibility

on
HandleVisibility

Command Window

Figure 1

Figure 2
If there is something
in this figure that you
don’t want overwritten,
turn off its Handle
Visibility
3-32

Writing Callbacks
Plotting commands issued from callbacks aren’t aware of their own figures if
the figure’s HandleVisibility is off.

This can be a problem when you’re working on a GUI, since the GUI needs to
see itself, so a third value, callback, exists. Plotting commands issued from the
Command Window, for example, won’t overwrite the figure when
HandleVisibility is callback. But any commands initiated by the callbacks
of the figure itself see the figure.

If you set the HandleVisibility of a figure to off or callback, you can no
longer see it from the command line. This means you can’t close it with the
close command or plot into it with the plot command. How do you close a
hidden figure? There is an option built into the close function that lets you
close everything, whether hidden or not: close hidden.

off
HandleVisibility

plot(x,y)
Callback

on
HandleVisibility

Plot

Figure 1

Figure 2

callback
HandleVisibility

plot(x,y)
Callback

Plot

Figure 1

>> plot(x,y)

on
HandleVisibility

Command Window

click Figure 2

When the figure’s
HandleVisibility is
set to callback, you
can see it from any
callback, but not
from the Command
Window.
3-33

3 GUI Implementation
Animate with WindowButtonMotionFcn To animate a response as the mouse
is being dragged, use a combination of the callback functions
WindowButtonDownFcn, WindowButtonMotionFcn, and WindowButtonUpFcn.

One of the niftier things to do with a MATLAB GUI is animate a calculation on
the fly. To do this, you need a function that gets called while the mouse is
moving across the screen. This gets a little tricky, but the diagram below
explains the situation. Let’s say we want to click, drag, and release a dot on a
figure window. When we click down on the dot (a line with a single point, to be
specific), we need to pick up the coordinates of the mouse and set the position
of the dot accordingly.

We can do exactly this with the figure property WindowButtonMotionFcn. But
the motion function can only be active when the mouse button is down.

animator start
ButtonDownFcn

xor
EraseMode

Figure 1 Figure 1

click,
drag...

Figure 1

...drag,
release

[empty]
WindowButtonMotionFcn

[empty]
WindowButtonUpFcn

animator move
WindowButtonMotionFcn

animator stop
WindowButtonUpFcn

[empty]
WindowButtonMotionFcn

[empty]
WindowButtonUpFcn

function animator(action)
switch(action)
 case 'start',
 set(gcbf,'WindowButtonMotionFcn','animator move')
 set(gcbf,'WindowButtonUpFcn','animator stop')
 case 'move'
 currPt=get(gca,'CurrentPoint');
 set(gcbo,'XData',currPt(1,1))
 set(gcbo,'YData',currPt(1,2))
 case 'stop'
 set(gcbf,'WindowButtonMotionFcn','')
 set(gcbf,'WindowButtonUpFcn','')
end

Function on disk

gco
gco
3-34

A Complete Example: Temperature Conversion
A Complete Example: Temperature Conversion
Let’s consider a GUI that converts the temperature from Celsius to Fahrenheit,
and vice versa. We assume that we’ve already gone through the careful design
process from the last chapter, and now we want to build the callbacks into the
GUI. This is what a drawing of our design looks like:

Here’s how it works. You can enter a temperature in degrees Fahrenheit in the
editable text field on the left (Callback = celsius fahrenheittext), or a
temperature in degrees Celsius in the editable text field on the right (Callback
= celsius celsiustext). In either case, the callback function takes the
temperature in one set of units, converts it to the other using the equation

Tcelsius = (5/9)(Tfahrenheit - 32)

then sets the length of the red line and the other text field. In addition, if you
click on the red line in the middle axes, you animate the red line in the
thermometer and update the text fields.

temperature celsiustext
Callback

37.0

Degrees
Celsius

98.6

Degrees
Fahrenheit

celsiustext
Tag

temperature fahrenheittext
Callback

fahrenheittext
Tag

temperature start
ButtonDownFcn

redline
Tag

function temperature(action)

switch(action)
 case 'start',
 ...
 case 'move',
 ...
 case 'stop',
 ...
 case 'celsiustext',
 ...
 case 'fahrenheittext',
 ...
end

Function on disk
Figure 1
3-35

3 GUI Implementation
After working with Guide, we end up with the following screen and save it to
the figure file temperaturefig.m.

And here’s what the code looks like that makes the GUI work.

This center region is
actually three different
axes—the one in the
middle has the animation
ButtonDownFcn.
3-36

A Complete Example: Temperature Conversion
function temperature(action)
% This is the callback function for the temperature conversion function

switch action

case 'start'
 set(gcbf,'WindowButtonMotionFcn','temperature move')
 set(gcbf,'WindowButtonUpFcn','temperature stop')
 temperature move

case 'move'
 currentPoint = get(gca,'CurrentPoint');
 newY = currentPoint(3);
 % Limit the endpoints of the motion and set the pointer
 fah = min(240,max(-40,newY));
 cels = (fah-32)*(5/9);

 % Set the text strings properly
 LocalSetDisplay(fah,cels)

case 'stop'
 set(gcbf,'WindowButtonMotionFcn','')
 set(gcbf,'WindowButtonUpFcn','')

case 'fahrenheit'
 fah = eval(get(gcbo,'String'));
 % Limit the endpoints of the motion and set the pointer
 fah = min(240,max(-40,fah));
 cels = (fah-32)*(5/9);
 LocalSetDisplay(fah,cels)

case 'celsius'
 cels = eval(get(gcbo,'String'));
 % Limit the endpoints of the motion and set the pointer
 cels = min(120,max(-40,cels));
 fah = cels*(9/5)+32;
 LocalSetDisplay(fah,cels)

end

function LocalSetDisplay(fah,cels)
% Set the text strings properly

pointerHandle = findobj(gcbf,'Tag','redline');
set(pointerHandle,'YData',[-40 fah])
fahHndl = findobj(gcbf,'Tag','fahrenheittext');
set(fahHndl,'String',sprintf('%3.1f',fah))
celsHndl = findobj(gcbf,'Tag','celsiustext');
set(celsHndl,'String',sprintf('%3.1f',cels))

Here’s one of the calls
to the subfunction

This is the subfunction
for filling the Celsius and
Fahrenheit text fields

The start, move,
and stop calls are
for animating the
red line
3-37

3 GUI Implementation
3-38

4

Reference

align
alignPurpose Align uicontrols and axes.

Syntax align
align(HandleList)
align(HandleList,HorizontalAlignment,VerticalAlignment)
Positions =

align(HandleList,HorizontalAlignment,VerticalAlignment)
Positions =

align(CurPositions,HorizontalAlignment,VerticalAlignment)

Description align brings up an alignment tool to interactively align uicontrols and axes.
align(HandleList) aligns the handles specified in HandleList. Calling the
tool as align(HandleList,HorizontalAlignment,VerticalAlignment) auto-
matically aligns the objects in the handle list without opening the alignment
tool. Adding a left hand argument to this calling syntax causes the updated
positions of the objects to be returned while the position of the objects on the
figure does not change. Finally, calling the alignment tool with
Positions=align(CurPositions,HorizontalAlignment,
VerticalAlignment) returns the updated position matrix from the initial posi-
tion matrix without opening the alignment tool.

Possible values for HorizontalAlignment are: None, Left, Center, Right,
Distribute, and Fixed.

Possible values for VerticalAlignment are: None, Top, Middle, Bottom,
Distribute, and Fixed. All alignment options will align the objects within the
bounding box that encloses the objects.

Distribute and Fixed will align objects to the bottom left of the bounding box.
Distribute evenly distributes the objects while Fixed distributes the objects
with a fixed distance (in points) between them. If Fixed is used for
HorizontalAlignment or VerticalAlignment, then the distance must be
passed in as an extra argument: align(HandleList,
4-2

align
HorizontalAlignment,Distance,VerticalAlignment) or align
(HandleList,HorizontalAlignment,VerticalAlignment,Distance).

The top of the Alignment Tool contains an Object Browser that lists all uicon-
trols and axes that can be aligned. Underneath the Object Browser are the
alignment controls. Objects can be aligned to each other in both horizontal and
vertical directions. The alignment takes place in the bounding box containing
all of the objects. Objects can also be distributed with respect to each other such
that the spacing between each object is equal. Finally, objects can have a set
spacing placed between them. The spacing option starts with the object in the
lower left corner and works its way up and right. This is the only type of align-
ment that does not pay attention to the bounding box that contains the objects.
There must be more than one object selected in order for the alignment tool to
work.

See Also guide, cbedit, menuedit, propedit, Object Browser, Controlled Figure
4-3

cbedit
cbeditPurpose Edit callback.

Syntax cbedit

cbedit(HandleList)

Description cbedit interactively edits callback strings for a selected object. cbedit
(HandleList) edits the properties for the object(s) in HandleList. If Han-
dleList is a vector, only similar object properties are listed.

The Callback Editor allows callback type properties to be modified by entering
them just as they would be entered from the command line. Similar to the Prop-
erty Editor, the top of the Callback Editor contains either the currently
selected object(s)' Type and Tag or it contains an Object Browser. Below this
lies the list of properties that can be modified. The property is the current value
of that property.

See Also guide, align, menuedit, propedit, Object Browser, Controlled Figure
4-4

Controlled Figure
Controlled FigureDescription A Controlled figure is a figure that has been put into an editable state by the
Guide Control Panel. When a figure is controlled, objects may be selected,
moved, resized, or edited interactively. The figure’s menus are hidden from
view and a set of menus related to Guide are inserted in their place. To view
the stored menus, activate the figure. When a figure is controlled, a white grid
that covers the entire figure is present.

See Also guide, align, cbedit, ctlpanel, menuedit,propedit, Object Browser
4-5

ctlpanel
ctlpanelPurpose Guide control panel.

Syntax ctlpanel

ctlpanel(HandleList)

Description ctlpanel is the initialization function for the Guide Control Panel.
ctlpanel(Handlelist) initializes all tools to the figure(s) containing all han-
dles in the HandleList.

See Also guide, align, cbedit, menuedit, propedit, Object Browser, Controlled Figure
4-6

guide
guidePurpose Guide Control Panel.

Syntax guide

guide(HandleList)

Description guide initiates the GUI Design Environment tools that allow Handle Graphics
objects to be manipulated interactively. Calling guide by itself will open the
Control Panel if it is not open already and update all other Guide tools that may
already be open. All tools are updated to use the current figure. guide
(Handlelist) initializes all tools to the figure(s) containing all handles in the
HandleList.

See Also align, cbedit, ctlpanel, menuedit, propedit, Object Browser, Controlled
Figure
4-7

helpwin
helpwinPurpose On-line help

Syntax helpwin topic

Description helpwin topic opens a help window and displays the help text for the given
topic. Links are created to functions referenced in the “See Also” line of the
help text.

helpwin(help_str,title) displays the string HELP_STR in the help window.
help_str can be passed in as a string with each line separated by carriage
returns, a column vector cell array of strings with each cell (row) representing
a line, or a string matrix with each row representing a line. The optional string
title appears in the title edit box.

helpwin({title1 help_str1;title2 help_str2;...},page) displays one
page of multipage help text. The multipage help text is passed in as a cell array
of strings or cells containing title and help_str pairs. Each row of the multi-
page help text cell array (dimensioned number of pages by 2) consists of a title
string paired with a string, cell array or string matrix of help text. The second
argument page is a string that must match one of the title entries in the mul-
tipage help text.The matching title represents the page that is to be displayed
first. If no second argument is given, the first page is displayed.
4-8

helpwin
A third argument can be passed to helpwin, which is a string that becomes the
title of the help window figure.

Additional arguments, after the window title, are interpreted as Handle
Graphics parameter-value pairs to be applied to the text displayed in the help
window.

 Examples helpwin plot
helpwin('Help String','title')
helpwin(['Help text for' sprintf('\n') 'my m-file.'],'title')
helpwin({'Help String for';'my m-file'},'title')

str = { 'Topic 1' 'Help string for Topic 1';
 'Topic 2' 'Help string for Topic 2';
 'Topic 3' 'Help string for Topic 3' }
helpwin(str,'Topic 2','My Title')

See Also doc, docopt, help, web
4-9

menuedit
menueditPurpose Edit menu.

Syntax menuedit

menuedit(Handlelist)

Description menuedit allows the menus on figures to be edited interactively.
menuedit(Handlelist) selects all objects in HandleList.

The Menu Editor allows the menus on figures to be interactively modified.
Menus can be moved up and down in the hierarchy through the use of the
arrow buttons on the left hand side of the tool. The Label, Tag, and Callback
properties can be modified directly on the tool. All other properties should be
4-10

menuedit
modified with the Property Editor or the Callback Editor. To view menus that
are on a controlled figure, the figure must be activated.

See Also guide, align, cbedit, ctlpanel, propedit, Object Browser, Controlled Figure
4-11

Object Browser
Object BrowserDescription The Object Browser on the Guide tools allows objects to be selected interac-
tively regardless of whether or not a controlled figure exists. If any controlled
figures exist, only controlled figures and their children appear in the Object
Browser. If no figures are controlled, then all objects from Root down appear.
There are three different Object Browsers. The Property Editor and the Call-
back Editor show all objects. The Menu Editor only shows figures and uimenus.
The Alignment Tool only shows figures, uicontrols and axes. Selecting an object
on any one of the tools also selects that object on all other tools. There are four
columns in the Object Browser. The first column contains “+”, “-”, or nothing
at all. A “+” indicates that the object has children and can be expanded. A “-”
indicates the object has children and has already been expanded and a blank
indicates the object has no children. The second column contains the object
type. The third column contains supplemental information and should help in
determining what object is selected. Finally the last column contains the tag of
the selected object.

Example The following is an example of an Object Browser when no figures are being
controlled.

See Also guide, align, cbedit, ctlpanel, menuedit, propedit, Controlled Figure
4-12

propedit
propeditPurpose Edit property.

Syntax propedit

propedit(HandleList)

Description propedit edits all properties of any selected object through the use of a graph-
ical interface. propedit(HandleList) edits the properties for the object(s) in
HandleList. If HandleList is a vector, only similar object properties are listed.

The Property Editor allows object properties to be modified interactively. The
top of the Property Editor shows either the currently selected object’s type and
that object’s tag or it shows the Object Browser. Below this lies the current
property and the value of that property. When changing properties, it is not
necessary to enter the entire property name but rather just enough to uniquely
identify the property. Below the current property, if open, is the list of all avail-
4-13

propedit
able properties for the given object(s) and the corresponding value of each of
those properties.

 See Also guide, align, cbedit, ctlpanel, menuedit, Object Browser, Controlled Figure
4-14

Index
A
activating a figure 3-11
align 3-10
Alignment Tool 3-14

B
ButtonDownFcn 3-31

C
Callback Editor 3-12
callbacks 2-14
cbedit 3-13
cbedit 3-10
close hidden 3-33
colormaps 3-20
Control Panel 3-10
controlling a figure 3-11

D
design principles 2-3
design process 2-12

E
Enable property 3-30

F
findobj 3-28

G
gca 3-27
gcbf 3-27
gcbo 3-27
guide 3-10
Guide tool list 3-10
Guide-controlled figure list 3-10
H
Handle Graphics 3-2, 3-3

M
Menu Editor 3-15
MenuBar property 3-15
menuedit 3-10

N
new object palette 3-10

O
Object Browser 3-5

P
paper prototyping 2-13
precipitation files example 2-15
propedit 3-10
Property Editor 1-4, 3-3
Property list 3-4

S
subfunctions 3-30
switch statement 3-27
switchyard programming 3-27

T
towork string 3-20

V
Visible property 3-5

W
weather data 2-15
I-1

Index

I-2

	Introduction
	Introduction
	How to Use This Book
	The Big Picture

	A Quick Start with Guide
	Modifying Properties with the Property Editor
	Adding Buttons with the Control Panel
	Setting Callbacks with the Callback Editor
	Activating the Figure
	The Bottom Line

	GUI Design
	Introduction
	Design Principles
	Simplicity
	Consistency
	Familiarity
	The Dynamic Interface
	Keep It Simple

	Design Process
	A Complete Example: Precipitation Files
	1. Define the Task—Draw the GUI
	The Task
	File Listbox
	Year Listbox
	Rainfall Plot
	Show Average
	Help
	Close
	Select All, Deselect All

	2. Draw the GUI—Test the GUI
	3. Write the Code—Test the Code

	GUI Implementation
	Introduction
	Handle Graphics and the Property Editor
	The Property Editor
	Using the Property List
	Using the Object Browser
	Secrets for the Power User

	GUI Layout with Guide
	The Control Panel
	Controlling and Activating the Figure

	The Property Editor
	The Callback Editor
	The Alignment Tool
	Alignment Tool Features

	The Menu Editor
	A Complete Example

	Writing Callbacks
	Layout vs. Callbacks
	Callback Tips

	A Complete Example: Temperature Conversion

	Reference
	align
	cbedit
	Controlled Figure
	ctlpanel
	guide
	helpwin
	menuedit
	Object Browser
	propedit

