Ground-based Gamma Ray Astronomy: Status and Future

Jean-Paul Tavernet LPNHE/UPMC

An experimentalist point of view

Gamma Production in Cosmic Accelerator

protons/nuclei electrons/positrons radiation fields and matter

Probing the Nonthermal Universe

FRIF Retreat Meeting 2011

JP. Tavernet

Why are these sources so important ?

Astrophysics

- Probing the highest energy physical processes occurring in different objects (SNRs, ...)
- Origin of cosmic rays
- Astroparticle Physics
 - Indirect search for dark matter
 - Search for energy dependence of the speed of light break of "Lorentz invariance"

Cosmology

 Indirect measure of the Extragalactic Background light: help us to understand star formation history

The Cerenkov Technique

I0km

125 m

JP. Tavernet

The Cerenkov Technique with Stereoscopy

Signal and Background

JP. Tavernet

H.E.S.S. (phase I) Characteristics

Gamsberg

- Four-Telescope network
 - Sited in Namibia: 23°S, 15°E, 1800 m altitude
 - Telescope separation: 120m
- Telescope Structures
 - Mirror dishes : 4 x 107 m²
 - Diameter: 12 m, Focal lenght: 15m
 - Cameras
 - 960 phoyomultiplier pixels
 - Pixels of 0.16º (2.8 mrad)
 - Wide field of view: 5°
 - Fast trigger coincidence
 - 16 ns integration win low
- Threshold : ~ 100 GeV

System Parameters 100 GeV Energy Threshold Energy Resolution ~15% Angular Resolution 0.05°-0.1° Pointing Accuracy ~ 10 arcsec Signal Rate ~55¥/min (Crab like) Background Rate 400 Hz Sensitivity: 1 Crab in 30 sec 0.01 Crab in 50h (All at Zenith) and 1 Crab = Crab Nebula Flux = 2.3 10⁻¹¹ cm⁻² s⁻¹ (>1 TeV)

VHE sky in 1996 and in 2010

LPNHE activities

Space-time & Relativity

Dark Matter

Limits on Quantum Gravity energy scale

Some models predict a violation of Lorentz invariance (LIV): the speed of photons depends on their energy $c' = c \left(1 \pm \xi \frac{E}{E_{P}} \pm \xi\right)$

If two photons are emitted at the same time, they detected at different times:

$$\frac{\Delta t}{\Delta E} \approx \frac{\xi}{E_{\rm P}H_0} \int_0^z dz' \frac{(1+z')}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$$

Increased with redshift

Need of variable and distant sources: GRBs, AGNs

PKS 2155-304 in 2006 and LIV

 $M^{q}_{QG} > 0.6 \times 10^{11} \text{ GeV} (\zeta < 3.6 \times 10^{16})$

arXiv:1101.3650 JP.Tavernet

Dark Matter annihilation

JP. Tavernet

Galaxies cluster (far !)

Galactic Centre (Astrophysics sources)

Dwarf Spheroidal Galaxy

Clumps (plenty of but where ?)

Dwarf spheroidal Galaxies

JP. Tavernet

Dwarf Spheroidal Galaxy Carina

So what next???

H.E.S.S. Phase II

Mirror 600 m2 (6* H.E.S.S. I)

Expected energy threshold 10-20 GeV First light in mid-2012 (Prob. 99,99%)

Under construction

H.E.S.S. 2011-01-26 08:59:13

5 000 Tonnes Hauteur ~ 50 m Focale 35 m Miroir parabolique ~ 600 m

ALC:

- Structure en acier

THE LPNHE camera with LLR, IRFU, LAPP, LPTA, ...

A plan of a future IACT experiment

an advanced facility for ground-based gamma ray astronomy

JP. Tavernet

Expectations for Galactic Plane Survey

Assumptions

- *2 improvement in hadron rejection
- *2 gain in angular resolution
- *10 gain in effective area

... there are 'a few' challenges

- Factor of 10 in sensitivity with factor of 10 in funding
- Find an optimized array layout, that has the required performance
- Optimize designs for effective production and for stability and high reliability

O(50-100) telescopes
O(10.000)m² mirror area
O(70)m² photo sensitive area
O(100.000) electronic channels
O(100)M€funds

Signal Readout and Camera Trigger

Different options exist :

- neCTAr proposition (LPNHE, IRFU Saclay, LPTA, Univ. Barcelona)
 - analogue memories (I GHz sampling)+ADC

Timeline for CTA

Conclusions

- VHE astronomy is a well-established field of astronomy: spectrum, images, light curves
- One can do cosmology, astroparticle physics with VHE detectors
- MAGIC-II, H.E.S.S.-II, VERITAS, CTA (future)
- Number VHE sources is approaching 100
- Galactic sources include PWN, SNR, helps our understanding of the origin of cosmic rays
- Extragalactic sources include AGN and radio galaxies (and starburst galaxies), GRBs are yet to be detected
- Still waiting for detection on Globular clusters, Dwarf galaxies, ...

The Galactic Plane

FRIF Retreat Meeting 2011

The LIV Method

\rightarrow Event by event approach

Method used by Lamon et al. for INTEGRAL and by Martinez and Errando for MAGIC

We use the following form for the probability density function:

$P(t,E) = N \int_0^\infty A(E_S) \Gamma(E_S) G(E - E_S, \sigma(E_S)) F_S(t - \tau E_S) dE_S$

where Γ(Es) is the emitted spectrum, G(E-Es, σ(Es)) is the smearing function in energy, A(Es) is the acceptance of H.E.S.S. and Fs is the emission time distribution at the source
The likelihood function is then given by the product

 $L = \prod P_i(t, E)$

over all photons in the studied sample

The maximum of the likelihood gives the time-lag T_1 (T_q) in s/TeV (s/TeV²)

Flux de rayons gamma

$$\frac{d\phi^{tot}}{dE_{\gamma}}(E_{\gamma},\psi,\Delta\Omega) = \frac{d\phi^{pp}}{dE_{\gamma}}(E_{\gamma}) \times \phi^{astro}(\psi,\Delta\Omega)$$

Physique des particules

 $\frac{d\Phi^{pp}}{dE_{\gamma}}(E_{\gamma}) = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^{2}} \frac{dN_{\gamma}}{dE_{\gamma}}$

Distribution spatiale

$$\Phi^{astro}(\psi, \Delta \Omega) = \int_{\Delta \Omega} d\Omega \int_{los} dl \rho^2(l, \psi)$$

