
Computation

Visualization

Programming

For Use with MATLAB®

User’s Guide
Version 2

Statistics
Toolbox

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Statistics Toolbox User’s Guide
 COPYRIGHT 1993 - 1999 by The MathWorks, Inc. All Rights Reserved.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: September 1993 First printing Version 1
March 1996 Second printing Version 2
January 1997 Third printing For MATLAB 5
May 1997 Revised for MATLAB 5.1 (online version)
January 1998 Revised for MATLAB 5.2 (online version)
January 1999 Revised for Version 2.1.2 (Release 11) (online only)

Contents
Preface

Before You Begin . vi
What Is the Statistics Toolbox? . vi
How to Use This Guide . vi
Mathematical Notation . vii
Typographical Conventions . viii

1
Tutorial

Introduction . 1-2
Primary Topic Areas . 1-2

Probability Distributions . 1-2
Parameter Estimation . 1-3
Descriptive Statistics . 1-3
Cluster Analysis . 1-3
Linear Models . 1-3
Nonlinear Models . 1-3
Hypothesis Tests . 1-3
Multivariate Statistics . 1-3
Statistical Plots . 1-3
Statistical Process Control (SPC) . 1-4
Design of Experiments (DOE) . 1-4

Probability Distributions . 1-5
Overview of the Functions . 1-6

Probability Density Function (pdf) . 1-6
Cumulative Distribution Function (cdf) 1-7
Inverse Cumulative Distribution Function 1-7
Random Numbers . 1-9
Mean and Variance . 1-11
i

ii Contents
Overview of the Distributions . 1-12
Beta Distribution . 1-13
Binomial Distribution . 1-15
Chi-Square (χ2) Distribution . 1-17
Noncentral Chi-Square Distribution 1-18
Discrete Uniform Distribution . 1-20
Exponential Distribution . 1-21
F Distribution . 1-23
Noncentral F Distribution . 1-24
Gamma Distribution . 1-25
Geometric Distribution . 1-27
Hypergeometric Distribution . 1-28
Lognormal Distribution . 1-29
Negative Binomial Distribution . 1-30
Normal Distribution . 1-31
Poisson Distribution . 1-33
Rayleigh Distribution . 1-35
Student’s t Distribution . 1-36
Noncentral t Distribution . 1-37
Uniform (Continuous) Distribution 1-38
Weibull Distribution . 1-39

Descriptive Statistics . 1-42
Measures of Central Tendency (Location) 1-42
Measures of Dispersion . 1-43
Functions for Data with Missing Values (NaNs) 1-45
Percentiles and Graphical Descriptions 1-46
The Bootstrap . 1-47

Cluster Analysis . 1-50
Terminology and Basic Procedure . 1-50
Finding the Similarities Between Objects 1-51

Returning Distance Information . 1-53
Defining the Links Between Objects . 1-53
Evaluating Cluster Formation . 1-56

Verifying the Cluster Tree . 1-56
Getting More Information about Cluster Links 1-57

Creating Clusters . 1-61
Finding the Natural Divisions in the Dataset 1-61
Specifying Arbitrary Clusters . 1-62

Linear Models . 1-65
One-Way Analysis of Variance (ANOVA) 1-65
Two-Way Analysis of Variance (ANOVA) 1-67
Multiple Linear Regression . 1-69

Example . 1-72
Quadratic Response Surface Models . 1-73

Exploring Graphs of Multidimensional Polynomials 1-74
Stepwise Regression . 1-75

Stepwise Regression Interactive GUI 1-75
Stepwise Regression Plot . 1-76
Stepwise Regression Diagnostics Figure 1-76

Nonlinear Regression Models . 1-79
Mathematical Form . 1-79
Nonlinear Modeling Example . 1-79

Fitting the Hougen-Watson Model . 1-80
Confidence Intervals on the Parameter Estimates 1-82
Confidence Intervals on the Predicted Responses 1-83
An Interactive GUI for Nonlinear Fitting and Prediction . . 1-83

Hypothesis Tests . 1-85
Terminology . 1-85
Assumptions . 1-86
Example . 1-87

Multivariate Statistics . 1-91
Principal Components Analysis . 1-91

Example . 1-92
The Principal Components (First Output) 1-95
The Component Scores (Second Output) 1-95
The Component Variances (Third Output) 1-99
Hotelling’s T2 (Fourth Output) . 1-102

Statistical Plots . 1-103
Box Plots . 1-103
Normal Probability Plots . 1-104
Quantile-Quantile Plots . 1-106
Weibull Probability Plots . 1-108
iii

iv Contents
Statistical Process Control (SPC) . 1-110
Control Charts . 1-110

Xbar Charts . 1-110
S Charts . 1-111
EWMA Charts . 1-112

Capability Studies . 1-113

Design of Experiments (DOE) . 1-115
Full Factorial Designs . 1-116
Fractional Factorial Designs . 1-117
D-Optimal Designs . 1-118

Generating D-Optimal Designs . 1-118
Augmenting D-Optimal Designs . 1-121
Designing Experiments with Uncontrolled Inputs 1-124

Demos . 1-125
The disttool Demo . 1-125
The polytool Demo . 1-126
The randtool Demo . 1-130
The rsmdemo Demo . 1-131

Part 1 . 1-132
Part 2 . 1-133

References . 1-134

2
Reference

What Is the Statistics Toolbox? vi
How to Use This Guide vi
Mathematical Notationvii
Typographical Conventions viii
Preface

Before You Begin vi

 Preface

vi
Before You Begin
This introduction describes how to begin using the Statistics Toolbox. It
explains how to use this guide, and points you to additional books for toolbox
installation information.

What Is the Statistics Toolbox?
The Statistics Toolbox is a collection of tools built on the MATLAB numeric
computing environment. The toolbox supports a wide range of common
statistical tasks, from random number generation, to curve fitting, to design of
experiments and statistical process control. The toolbox provides two
categories of tools:

• Building-block probability and statistics functions

• Graphical, interactive tools

The first category of tools is made up of functions that you can call from the
command line or from your own applications. Many of these functions are
MATLAB M-files, series of MATLAB statements that implement specialized
Statistics algorithms. You can view the MATLAB code for these functions using
the statement

type function_name

You can change the way any toolbox function works by copying and renaming
the M-file, then modifying your copy. You can also extend the toolbox by adding
your own M-files.

Secondly, the toolbox provides a number of interactive tools that let you access
many of the functions through a graphical user interface (GUI). Together, the
GUI-based tools provide an environment for polynomial fitting and prediction,
as well as probability function exploration.

How to Use This Guide
If you are a new user begin with Chapter 1, Tutorial. This chapter introduces
the MATLAB statistics environment through the toolbox functions. It
describes the functions with regard to particular areas of interest, such as
probability distributions, linear and nonlinear models, principal components
analysis, design of experiments, statistical process control, and descriptive
statistics.

Before You Begin
All toolbox users should use Chapter 2, Reference, for information about
specific tools. For functions, reference descriptions include a synopsis of the
function’s syntax, as well as a complete explanation of options and operation.
Many reference descriptions also include examples, a description of the
function’s algorithm, and references to additional reading material.

Use this guide in conjunction with the software to learn about the powerful
features that MATLAB provides. Each chapter provides numerous examples
that apply the toolbox to representative statistical tasks.

The random number generation functions for various probability distributions
are based on all the primitive functions, randn and rand. There are many
examples that start by generating data using random numbers. To duplicate
the results in these examples, first execute the commands below.

seed = 931316785;
rand('seed',seed);
randn('seed',seed);

You might want to save these commands in an M-file script called init.m.
Then, instead of three separate commands, you need only type init.

Mathematical Notation
This manual and the Statistics Toolbox functions use the following
mathematical notation conventions.

β Parameters in a linear model.

E(x) Expected value of x.

f(x|a,b) Probability density function. x is the independent variable;
a and b are fixed parameters.

F(x|a,b) Cumulative distribution function.

I([a, b]) Indicator function. In this example the function takes the
value 1 on the closed interval from a to b and is 0
elsewhere.

p and q p is the probability of some event.
q is the probability of ~p, so q = 1– p.

E x() tf t() td∫=
vii

 Preface

viii
Typographical Conventions

To Indicate This Guide Uses Example

Example code Monospace type
(Use Code tag.)

To assign the value 5 to A,
enter

A = 5

Function
names/syntax

Monospace type
(Use Code tag.)

For syntax lines, use
paragraph tag Syntax.

The cos function finds the
cosine of each array
element.

Syntax line example is

MLGetVar ML_var_name

Keys Boldface with an initial
capital letter
(Use Menu-Bodytext tag.)

Press the Return key.

Mathematical
expressions

Variables in italics.

Functions, operators, and
constants in standard
type. (Use
EquationVariables tag.)

This vector represents the
polynomial

p = x2 + 2x + 3

MATLAB
output

Monospace type
(Use Code tag.)

MATLAB responds with

A =

5

Menu names,
menu items,
and controls

Boldface with an initial
capital letter
(Use Menu-Bodytext tag.)

Choose the File menu.

New terms NCS italics
(Use Body text-ital tag.)

An array is an ordered
collection of information.

Before You Begin
In addition, some words in our syntax lines are shown within single quotation
marks (sometimes double). These marks are a MATLAB requirement and must
be typed. For example,

dir dirname
f = hex2num('s')

or

f ="pressure"
ix

 Preface

x

Probability Distributions 1-5

Descriptive Statistics 1-42

Cluster Analysis 1-50

Linear Models 1-65

Nonlinear Regression Models 1-79

Hypothesis Tests 1-85

Multivariate Statistics 1-91

Statistical Plots 1-103

Statistical Process Control (SPC) 1-110

Design of Experiments (DOE) 1-115

Demos . 1-125

References . 1-134
1
Tutorial

Introduction . 1-2

1 Tutorial

1-2
Introduction
The Statistics Toolbox, for use with MATLAB, supplies basic statistics
capability on the level of a first course in engineering or scientific statistics.
The statistics functions it provides are building blocks suitable for use inside
other analytical tools.

Primary Topic Areas
The Statistics Toolbox has more than 200 M-files, supporting work in the
topical areas below:

• Probability distributions

• Descriptive statistics

• Cluster Analysis

• Linear models

• Nonlinear models

• Hypothesis tests

• Multivariate statistics

• Statistical plots

• Statistical Process Control

• Design of Experiments

Probability Distributions
The Statistics Toolbox supports 20 probability distributions. For each
distribution there are five associated functions. They are:

• Probability density function (pdf)

• Cumulative distribution function (cdf)

• Inverse of the cumulative distribution function

• Random number generator

• Mean and variance as a function of the parameters

For data driven distributions (beta, binomial, exponential, gamma, normal,
Poisson, uniform and Weibull), the Statistics Toolbox has functions for
computing parameter estimates and confidence intervals.

Introduction
Descriptive Statistics
The Statistics Toolbox provides functions for describing the features of a data
sample. These descriptive statistics include measures of location and spread,
percentile estimates and functions for dealing with data having missing
values.

Cluster Analysis
The Statistics Toolbox provides functions that allow you to divide a set of
objects into subgroups, each having members that are as much alike as
possible. This process is called cluster analysis.

Linear Models
In the area of linear models the Statistics Toolbox supports one-way and
two-way analysis of variance (ANOVA), multiple linear regression, stepwise
regression, response surface prediction, and ridge regression.

Nonlinear Models
For nonlinear models there are functions for parameter estimation, interactive
prediction and visualization of multidimensional nonlinear fits, and confidence
intervals for parameters and predicted values.

Hypothesis Tests
There are also functions that do the most common tests of hypothesis – t-tests
and Z-tests.

Multivariate Statistics
The Statistics Toolbox supports methods in Multivariate Statistics, including
Principal Components Analysis and Linear Discriminant Analysis.

Statistical Plots
The Statistics Toolbox adds box plots, normal probability plots, Weibull
probability plots, control charts, and quantile-quantile plots to the arsenal of
graphs in MATLAB. There is also extended support for polynomial curve fitting
and prediction.
1-3

1 Tutorial

1-4
Statistical Process Control (SPC)
For SPC there are functions for plotting common control charts and performing
process capability studies.

Design of Experiments (DOE)
The Statistics Toolbox supports both factorial and D-optimal design. There are
functions for generating designs, augmenting designs and optimally assigning
units with fixed covariates.

Probability Distributions
Probability Distributions
Probability distributions arise from experiments where the outcome is subject
to chance. The nature of the experiment dictates which probability
distributions may be appropriate for modeling the resulting random outcomes.
There are two types of probability distributions – continuous and discrete.

Suppose you are studying a machine that produces videotape. One measure of
the quality of the tape is the number of visual defects per hundred feet of tape.
The result of this experiment is an integer, since you cannot observe 1.5
defects. To model this experiment you should use a discrete probability
distribution.

A measure affecting the cost and quality of videotape is its thickness. Thick
tape is more expensive to produce, while variation in the thickness of the tape
on the reel increases the likelihood of breakage. Suppose you measure the
thickness of the tape every 1000 feet. The resulting numbers can take a
continuum of possible values, which suggests using a continuous probability
distribution to model the results.

Using a probability model does not allow you to predict the result of any
individual experiment but you can determine the probability that a given
outcome will fall inside a specific range of values.

Continuous (data) Continuous (statistics) Discrete

Beta Chi-square Binomial

Exponential Noncentral Chi-square Discrete Uniform

Gamma F Geometric

Lognormal Noncentral F Hypergeometric

Normal t Negative Binomial

Rayleigh Noncentral t Poisson

Uniform

Weibull
1-5

1 Tutorial

1-6
Overview of the Functions
MATLAB provides five functions for each distribution:

• Probability density function (pdf)

• Cumulative distribution function (cdf)

• Inverse cumulative distribution function

• Random number generator

• Mean and variance

This section discusses each of these functions.

Probability Density Function (pdf)
The probability density function has a different meaning depending on
whether the distribution is discrete or continuous.

For discrete distributions, the pdf is the probability of observing a particular
outcome. In our videotape example, the probability that there is exactly one
defect in a given hundred feet of tape is the value of the pdf at 1.

Unlike discrete distributions, the pdf of a continuous distribution at a value is
not the probability of observing that value. For continuous distributions the
probability of observing any particular value is zero. To get probabilities you
must integrate the pdf over an interval of interest. For example the probability
of the thickness of a videotape being between one and two millimeters is the
integral of the appropriate pdf from one to two.

A pdf has two theoretical properties:

• The pdf is zero or positive for every possible outcome.

• The integral of a pdf over its entire range of values is one.

A pdf is not a single function. Rather a pdf is a family of functions characterized
by one or more parameters. Once you choose (or estimate) the parameters of a
pdf, you have uniquely specified the function.

The pdf function call has the same general format for every distribution in the
Statistics Toolbox. The following commands illustrate how to call the pdf for
the normal distribution.

x = [–3:0.1:3];
f = normpdf(x,0,1);

Probability Distributions
The variable f contains the density of the normal pdf with parameters 0 and 1
at the values in x. The first input argument of every pdf is the set of values for
which you want to evaluate the density. Other arguments contain as many
parameters as are necessary to define the distribution uniquely. The normal
distribution requires two parameters, a location parameter (the mean, µ) and
a scale parameter (the standard deviation, σ).

Cumulative Distribution Function (cdf)
If f is a probability density function, the associated cumulative distribution
function F is

The cdf of a value x, F(x), is the probability of observing any outcome less than
or equal to x.

A cdf has two theoretical properties:

• The cdf ranges from 0 to 1.

• If y > x, then the cdf of y is greater than or equal to the cdf of x.

The cdf function call has the same general format for every distribution in the
Statistics Toolbox. The following commands illustrate how to call the cdf for the
normal distribution:

x = [–3:0.1:3];
p = normcdf(x,0,1);

The variable p contains the probabilities associated with the normal cdf with
parameters 0 and 1 at the values in x. The first input argument of every cdf is
the set of values for which you want to evaluate the probability. Other
arguments contain as many parameters as are necessary to define the
distribution uniquely.

Inverse Cumulative Distribution Function
The inverse cumulative distribution function returns critical values for
hypothesis testing given significance probabilities. To understand the

F x() P X x≤() f t() td
∞–

x

∫= =
1-7

1 Tutorial

1-8
relationship between a continuous cdf and its inverse function, try the
following:

x = [–3:0.1:3];
xnew = norminv(normcdf(x,0,1),0,1);

How does xnew compare with x? Conversely, try this:

p = [0.1:0.1:0.9];
pnew = normcdf(norminv(p,0,1),0,1);

How does pnew compare with p?

Calculating the cdf of values in the domain of a continuous distribution returns
probabilities between zero and one. Applying the inverse cdf to these
probabilities yields the original values.

For discrete distributions, the relationship between a cdf and its inverse
function is more complicated. It is likely that there is no x value such that the
cdf of x yields p. In these cases the inverse function returns the first value x
such that the cdf of x equals or exceeds p. Try this:

x = [0:10];
y = binoinv(binocdf(x,10,0.5),10,0.5);

How does x compare with y?

The commands below show the problem with going the other direction for
discrete distributions.

p = [0.1:0.2:0.9];
pnew = binocdf(binoinv(p,10,0.5),10,0.5)

pnew =

 0.1719 0.3770 0.6230 0.8281 0.9453

Probability Distributions
The inverse function is useful in hypothesis testing and production of
confidence intervals. Here is the way to get a 99% confidence interval for a
normally distributed sample.

p = [0.005 0.995];
x = norminv(p,0,1)

x =

 –2.5758 2.5758

The variable x contains the values associated with the normal inverse function
with parameters 0 and 1 at the probabilities in p. The difference p(2) – p(1) is
0.99. Thus, the values in x define an interval that contains 99% of the standard
normal probability.

The inverse function call has the same general format for every distribution in
the Statistics Toolbox. The first input argument of every inverse function is the
set of probabilities for which you want to evaluate the critical values. Other
arguments contain as many parameters as are necessary to define the
distribution uniquely.

Random Numbers
The methods for generating random numbers from any distribution all start
with uniform random numbers. Once you have a uniform random number
generator, you can produce random numbers from other distributions either
directly or by using inversion or rejection methods.

Direct. Direct methods flow from the definition of the distribution.

As an example, consider generating binomial random numbers. You can think
of binomial random numbers as the number of heads in n tosses of a coin with
probability p of a heads on any toss. If you generate n uniform random numbers
and count the number that are greater than p, the result is binomial with
parameters n and p.

Inversion. The inversion method works due to a fundamental theorem that
relates the uniform distribution to other continuous distributions.

If F is a continuous distribution with inverse F -1, and U is a uniform random
number, then F -1(U) has distribution F.
1-9

1 Tutorial

1-1
So, you can generate a random number from a distribution by applying the
inverse function for that distribution to a uniform random number.
Unfortunately, this approach is usually not the most efficient.

Rejection. The functional form of some distributions makes it difficult or time
consuming to generate random numbers using direct or inversion methods.
Rejection methods can sometimes provide an elegant solution in these cases.

Suppose you want to generate random numbers from a distribution with pdf f.
To use rejection methods you must first find another density, g, and a constant,
c, so that the inequality below holds.

You then generate the random numbers you want using the following steps:

1 Generate a random number x from distribution G with density g.

2 Form the ratio

3 Generate a uniform random number u.

4 If the product of u and r is less than one, return x.

5 Otherwise repeat steps one to three.

For efficiency you need a cheap method for generating random numbers from
G and the scalar, c, should be small. The expected number of iterations is c.

Syntax for Random Number Functions. You can generate random numbers from
each distribution. This function provides a single random number or a matrix
of random numbers, depending on the arguments you specify in the function
call.

For example, here is the way to generate random numbers from the beta
distribution. Four statements obtain random numbers: the first returns a

f x() cg x() x∀≤

r
cg x()
f x()--------------=
0

Probability Distributions
single number, the second returns a 2-by-2 matrix of random numbers, and the
third and fourth return 2-by-3 matrices of random numbers.

a = 1;
b = 2;
c = [.1 .5; 1 2];
d = [.25 .75; 5 10];
m = [2 3];
nrow = 2;
ncol = 3;
r1 = betarnd(a,b)
r1 =

 0.4469

r2 = betarnd(c,d)
r2 =

 0.8931 0.4832
 0.1316 0.2403

r3 = betarnd(a,b,m)
r3 =

 0.4196 0.6078 0.1392
 0.0410 0.0723 0.0782

r4 = betarnd(a,b,nrow,ncol)
r4 =

 0.0520 0.3975 0.1284
 0.3891 0.1848 0.5186

Mean and Variance
The mean and variance of a probability distribution are generally simple
functions of the parameters of the distribution. The Statistics Toolbox
functions ending in stat all produce the mean and variance of the desired
distribution given the parameters.
1-11

1 Tutorial

1-1
The example shows a contour plot of the mean of the Weibull distribution as a
function of the parameters.

x = (0.5:0.1:5);
y = (1:0.04:2);
[X,Y] = meshgrid(x,y);
Z = weibstat(X,Y);
[c,h] = contour(x,y,Z,[0.4 0.6 1.0 1.8]);
clabel(c);

Overview of the Distributions
The Statistics Toolbox supports 20 probability distributions. These are:

• Beta

• Binomial

• Chi-square

• Noncentral Chi-square

• Discrete Uniform

• Exponential

• F

• Noncentral F

• Gamma

• Geometric

• Hypergeometric

1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

 0.4

 0.6

 1

 1.8
2

Probability Distributions
• Lognormal

• Negative Binomial

• Normal

• Poisson

• Rayleigh

• Student’s t

• Noncentral t

• Uniform

• Weibull

This section gives a short introduction to each distribution.

Beta Distribution

Background. The beta distribution describes a family of curves that are unique
in that they are nonzero only on the interval [0 1]. A more general version of
the function assigns parameters to the end-points of the interval.

The beta cdf is the same as the incomplete beta function.

The beta distribution has a functional relationship with the t distribution. If Y
is an observation from Student’s t distribution with ν degrees of freedom then
the following transformation generates X, which is beta distributed:

if: then

The Statistics Toolbox uses this relationship to compute values of the t cdf and
inverse function as well as generating t distributed random numbers.

Mathematical Definition. The beta pdf is:

X
1
2---

1
2---

Y

ν Y2
+

--------------------+=

Y t ν()∼ X β
ν
2---

ν
2---, 

 ∼

y f x a b,()
1

B a b,()-------------------xa 1– 1 x–()b 1– I 0 1,() x()= =
1-13

1 Tutorial

1-1
Parameter Estimation. Suppose you are collecting data that has hard lower and
upper bounds of zero and one respectively. Parameter estimation is the process
of determining the parameters of the beta distribution that fit this data best in
some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the beta pdf. But for the pdf, the parameters
are known constants and the variable is x. The likelihood function reverses the
roles of the variables. Here, the sample values (the xs) are already observed. So
they are the fixed constants. The variables are the unknown parameters.
Maximum likelihood estimation (MLE) involves calculating the values of the
parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the
parameters of the beta distribution. Here is an example using random numbers
from the beta distribution with a = 5 and b = 0.2.

r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)

phat =

 4.5330 0.2301

pci =

 2.8051 0.1771
 6.2610 0.2832

The MLE for the parameter, a is 4.5330 compared to the true value of 5. The
95% confidence interval for a goes from 2.8051 to 6.2610, which includes the
true value.

Similarly the MLE for the parameter, b is 0.2301 compared to the true value of
0.2. The 95% confidence interval for b goes from 0.1771 to 0.2832, which also
includes the true value.

Of course in this made-up example we know the “true value.” In
experimentation we do not.
4

Probability Distributions
Example and Plot. The shape of the beta distribution is quite variable depending
on the values of the parameters, as illustrated by this plot.

The constant pdf (the flat line) shows that the standard uniform distribution is
a special case of the beta distribution.

Binomial Distribution

Background. The binomial distribution models the total number of successes in
repeated trials from an infinite population under the following conditions:

• Only two outcomes are possible on each of n trials.

• The probability of success for each trial is constant.

• All trials are independent of each other.

James Bernoulli derived the binomial distribution in 1713 (Ars Conjectandi).
Earlier, Blaise Pascal had considered the special case where p = 1/2.

Mathematical Definition. The binomial pdf is:

where: and .

The binomial distribution is discrete. For zero and for positive integers less
than n, the pdf is nonzero.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

 a = b = 1

 a = b = 4 a = b = 0.75

y f x n p,()
n
x 

 pxq 1 x–()I 0 1 … n, , ,() x()= =

n
x 

  n!
x! n x–()!------------------------= q 1 p–=
1-15

1 Tutorial

1-1
Parameter Estimation. Suppose you are collecting data from a widget
manufacturing process, and you record the number of widgets within
specification in each batch of 100. You might be interested in the probability
that an individual widget is within specification. Parameter estimation is the
process of determining the parameter, p, of the binomial distribution that fits
this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the binomial pdf above. But for the pdf, the
parameters (n and p) are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the xs) are
already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the value of p that give the
highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the
parameters of the binomial distribution. Here is an example using random
numbers from the binomial distribution with n = 100 and p = 0.9.

r = binornd(100,0.9)

r =

 88

[phat, pci] = binofit(r,100)

phat =

 0.8800

pci =

 0.7998
 0.9364

The MLE for the parameter, p is 0.8800 compared to the true value of 0.9. The
95% confidence interval for p goes from 0.7998 to 0.9364, which includes the
true value.

Of course in this made-up example we know the “true value” of p.
6

Probability Distributions
Example and Plot. The following commands generate a plot of the binomial pdf
for n = 10 and p = 1/2.

x = 0:10;
y = binopdf(x,10,0.5);
plot(x,y,'+')

Chi-Square (χ2) Distribution

Background. The χ2 distribution is a special case of the gamma distribution
where b = 2, in the equation for gamma distribution below.

The χ2 distribution gets special attention because of its importance in normal
sampling theory. If a set of n observations are normally distributed with
variance σ2, and s2 is the sample standard deviation, then:

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

y f x a b,()
1

baΓ a()
------------------xa 1– e

x
b---–

= =

n 1–()s2

σ2----------------------- χ2 n 1–()∼
1-17

1 Tutorial

1-1
The Statistics Toolbox uses the above relationship to calculate confidence
intervals for the estimate of the normal parameter σ2 in the function normfit.

Mathematical Definition. The χ2 pdf is:

Example and Plot. The χ2 distribution is skewed to the right especially for few
degrees of freedom (ν). The plot shows the χ2 distribution with four degrees of
freedom.

x = 0:0.2:15;
y = chi2pdf(x,4);
plot(x,y)

Noncentral Chi-Square Distribution

Background. The χ2 distribution is actually a simple special case of the
noncentral chi-square distribution. One way to generate random numbers with
a χ2 distribution (with ν degrees of freedom) is to sum the squares of ν standard
normal random numbers (mean equal to zero.)

What if we allow the normally distributed quantities to have a mean other than
zero? The sum of squares of these numbers yields the noncentral chi-square
distribution. The noncentral chi-square distribution requires two parameters:
the degrees of freedom and the noncentrality. The noncentrality parameter is
the sum of the squared means of the normally distributed quantities.

y f x ν() x ν 2–() 2⁄ e x– 2⁄

2

v
2--- Γ ν 2⁄()

-------------------------------------= =

0 5 10 15
0

0.05

0.1

0.15

0.2
8

Probability Distributions
The noncentral chi-square has scientific application in thermodynamics and
signal processing. The literature in these areas may refer to it as the Ricean or
generalized Rayleigh distribution.

Mathematical Definition. There are many equivalent formulas for the noncentral
chi-square distribution function. One formulation uses a modified Bessel
function of the first kind. Another uses the generalized Laguerre polynomials.
The Statistics Toolbox computes the cumulative distribution function values
using a weighted sum of χ2 probabilities with the weights equal to the
probabilities of a Poisson distribution. The Poisson parameter is one-half of the
noncentrality parameter of the noncentral chi-square.

Example and Plot. The following commands generate a plot of the noncentral
chi-square pdf.

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'– –',x,p1,'–')

F x ν δ,()

1
2---δ 

 j

j!-------------e

δ
2---–

 
 
 
 
 

Pr χ
ν 2 j+

2 x≤[]

j 0=

∞

∑=

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2
1-19

1 Tutorial

1-2
Discrete Uniform Distribution

Background. The discrete uniform distribution is a simple distribution that puts
equal weight on the integers from one to N.

Mathematical Definition. The discrete uniform pdf is:

Example and Plot. As for all discrete distributions, the cdf is a step function. The
plot shows the discrete uniform cdf for N = 10.

x = 0:10;
y = unidcdf(x,10);
stairs(x,y)
set(gca,'Xlim',[0 11])

To pick a random sample of 10 from a list of 553 items:

numbers = unidrnd(553,1,10)

numbers =
293 372 5 213 37 231 380 326 515 468

y f x N()
1
N----I 1 … N, ,() x()= =

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

0

Probability Distributions
Exponential Distribution

Background. Like the chi-square, the exponential distribution is a special case
of the gamma distribution (obtained by setting a = 1 in the equation below.)

The exponential distribution is special because of its utility in modeling events
that occur randomly over time. The main application area is in studies of
lifetimes.

Mathematical Definition. The exponential pdf is:

Parameter Estimation. Suppose you are stress testing light bulbs and collecting
data on their lifetimes. You assume that these lifetimes follow an exponential
distribution. You want to know how long you can expect the average light bulb
to last. Parameter estimation is the process of determining the parameters of
the exponential distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the beta pdf on the previous page. But for the
pdf, the parameters are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the xs) are
already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the values of the parameters
that give the highest likelihood given the particular set of data.

y f x a b,()
1

baΓ a()
------------------xa 1– e

x
b---–

= =

y f x µ()
1
µ---e

x
µ---–

= =
1-21

1 Tutorial

1-2
The function expfit returns the MLEs and confidence intervals for the
parameters of the exponential distribution. Here is an example using random
numbers from the exponential distribution with µ = 700.

lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)
muhat =
 672.8207

muci =

 547.4338
 810.9437

The MLE for the parameter, µ is 672 compared to the true value of 700. The
95% confidence interval for µ goes from 547 to 811, which includes the true
value.

In our life tests we do not know the true value of µ so it is nice to have a
confidence interval on the parameter to give a range of likely values.

Example and Plot. For exponentially distributed lifetimes, the probability that
an item will survive an extra unit of time is independent of the current age of
the item. The example shows a specific case of this special property.

l = 10:10:60;
lpd = l+0.1;
deltap = (expcdf(lpd,50)–expcdf(l,50))./(1–expcdf(l,50))

deltap =

 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
2

Probability Distributions
The plot shows the exponential pdf with its parameter (and mean), lambda, set
to two.

x = 0:0.1:10;
y = exppdf(x,2);
plot(x,y)

F Distribution

Background. The F distribution has a natural relationship with the chi-square
distribution. If χ1 and χ2 are both chi-square with ν1 and ν2 degrees of freedom
respectively, then the statistic, F is F distributed.

The two parameters, ν1 and ν2, are the numerator and denominator degrees of
freedom. That is, ν1 and ν2 are the number of independent pieces information
used to calculate χ1 and χ2 respectively.

Mathematical Definition. The pdf for the F distribution is:

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

F ν1 ν2,()

χ1
ν1

χ2
ν2

------=

y f x ν1 ν2,()
Γ

ν1 ν2+()
2-----------------------

Γ
ν1
2------ 

 Γ
ν2
2------ 

 

ν1
ν2
------ 

 
ν1

2----- x
ν1 2–

2--------------

1
ν1
ν2
------ 

 x+

ν1 ν2+
2-----------------

---= =
1-23

1 Tutorial

1-2
Example and Plot. The most common application of the F distribution is in
standard tests of hypotheses in analysis of variance and regression.

The plot shows that the F distribution exists on the positive real numbers and
is skewed to the right.

x = 0:0.01:10;
y = fpdf(x,5,3);
plot(x,y)

Noncentral F Distribution

Background. As with the χ2 the F distribution is a special case of the noncentral
F distribution. The F distribution is the result of taking the ratio of two χ2

random variables each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable
divided by its degrees of freedom, the resulting distribution is the noncentral F.

The main application of the noncentral F distribution is to calculate the power
of a hypothesis test relative to a particular alternative.

Mathematical Definition. Similarly to the noncentral chi-square, the Statistics
Toolbox calculates noncentral F distribution probabilities as a weighted sum of
incomplete beta function using Poisson probabilities as the weights.

where I(x|a,b) is the incomplete beta function with parameters a and b.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

F x ν1 ν2 δ, ,()

1
2---δ 

 j

j!-------------e

δ
2---–

 
 
 
 
 

I ν1 x⋅
ν2 ν+ 1 x⋅-------------------------

ν1
2------ j+

ν2
2------,

 
 
 

j 0=

∞

∑=
4

Probability Distributions
Example and Plot. The following commands generate a plot of the noncentral F
pdf.

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'– –',x,p1,'–')

Gamma Distribution

Background. The gamma distribution is a family of curves based on two
parameters. The chi-square and exponential distributions, which are children
of the gamma distribution, are one-parameter distributions that fix one of the
two gamma parameters.

The gamma distribution has the following relationship with the incomplete
gamma function:

For b = 1 the functions are identical.

When a is large, the gamma distribution closely approximates a normal
distribution with the advantage that the gamma distribution has density only
for positive real numbers.

Mathematical Definition. The gamma pdf is:

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

Γ x a b,() gammainc
x
b'
----a 

 =

y f x a b,()
1

baΓ a()
------------------xa 1– e

x
b---–

= =
1-25

1 Tutorial

1-2
Parameter Estimation. Suppose you are stress testing computer memory chips and
collecting data on their lifetimes. You assume that these lifetimes follow a
gamma distribution. You want to know how long you can expect the average
computer memory chip to last. Parameter estimation is the process of
determining the parameters of the gamma distribution that fit this data best
in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the gamma pdf above. But for the pdf, the
parameters are known constants and the variable is x. The likelihood function
reverses the roles of the variables. Here, the sample values (the xs) are already
observed. So they are the fixed constants. The variables are the unknown
parameters. MLE involves calculating the values of the parameters that give
the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the
parameters of the gamma distribution. Here is an example using random
numbers from the gamma distribution with a = 10 and b = 5.

lifetimes = gamrnd(10,5,100,1);
[phat, pci] = gamfit(lifetimes)
phat =
 10.9821 4.7258

pci =

 7.4001 3.1543
 14.5640 6.2974

Note phat(1) = and phat(2) = . The MLE for the parameter, a is 10.98
compared to the true value of 10. The 95% confidence interval for a goes from
7.4 to 14.6, which includes the true value.

Similarly the MLE for the parameter, b is 4.7 compared to the true value of 5.
The 95% confidence interval for b goes from 3.2 to 6.3, which also includes the
true value.

In our life tests we do not know the true value of a and b so it is nice to have a
confidence interval on the parameters to give a range of likely values.

â b̂
6

Probability Distributions
Example and Plot. In the example the gamma pdf is plotted with the solid line.
The normal pdf has a dashed line type.

x = gaminv((0.005:0.01:0.995),100,10);
y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
plot(x,y,'–',x,y1,'–.')

Geometric Distribution

Background. The geometric distribution is discrete, existing only on the
nonnegative integers. It is useful for modeling the runs of consecutive
successes (or failures) in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure
in an independent succession of tests where each test results in success or
failure.

Mathematical Definition. The geometric pdf is:

700 800 900 1000 1100 1200 1300
0

1

2

3

4

5
x 10-3

y f x p() pqxI 0 1 K, ,() x()= =

where q 1 p–=
1-27

1 Tutorial

1-2
Example and Plot. Suppose the probability of a five-year-old battery failing in
cold weather is 0.03. What is the probability of starting 25 consecutive days
during a long cold snap?

1 – geocdf(25,0.03)

ans =

 0.4530

The plot shows the cdf for this scenario.

x = 0:25;
y = geocdf(x,0.03);
stairs(x,y)

Hypergeometric Distribution

Background. The hypergeometric distribution models the total number of
successes in a fixed size sample drawn without replacement from a finite
population.

The distribution is discrete, existing only for nonnegative integers less than the
number of samples or the number of possible successes, whichever is greater.

The hypergeometric distribution differs from the binomial only in that the
population is finite and the sampling from the population is without
replacement.

The hypergeometric distribution has three parameters that have direct
physical interpretation. M is the size of the population. K is the number of

0 5 10 15 20 25
0

0.2

0.4

0.6
8

Probability Distributions
items with the desired characteristic in the population. n is the number of
samples drawn. Sampling “without replacement” means that once a particular
sample is chosen, it is removed from the relevant population for drawing the
next sample.

Mathematical Definition. The hypergeometric pdf is:

Example and Plot. The plot shows the cdf of an experiment taking 20 samples
from a group of 1000 where there are 50 items of the desired type.

x = 0:10;
y = hygecdf(x,1000,50,20);
stairs(x,y)

Lognormal Distribution

Background. The normal and lognormal distributions are closely related. If X is
distributed lognormal with parameters µ and σ2, then lnX is distributed
normal with parameters µ and σ2.

The lognormal distribution is applicable when the quantity of interest must be
positive, since lnX exists only when the random variable X is positive.
Economists often model the distribution of income using a lognormal
distribution.

y f x M K n, ,()

K
x 

  M K–

n x– 
 

M
n 

 
------------------------------= =

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1-29

1 Tutorial

1-3
Mathematical Definition. The lognormal pdf is:

Example and Plot. Suppose the income of a family of four in the United States
follows a lognormal distribution with µ = log(20,000) and σ2 = 1.0. Plot the
income density.

x = (10:1000:125010)';
y=lognpdf(x,log(20000),1.0);
plot(x,y)
set(gca,'Xtick',[0 30000 60000 90000 120000])
set(gca,'xticklabel',str2mat('0','$30,000','$60,000',...
'$90,000','$120,000'))

Negative Binomial Distribution

Background. The geometric distribution is a special case of the negative
binomial distribution (also called the Pascal distribution). The geometric
distribution models the number of successes before one failure in an
independent succession of tests where each test results in success or failure.

In the negative binomial distribution the number of failures is a parameter of
the distribution. The parameters are the probability of success, p, and the
number of failures, r.

Mathematical Definition. The negative binomial pdf is

y f x µ σ,() 1
xσ 2π
------------------e

lnx µ–()– 2

2σ2----------------------------

= =

0 $30,000 $60,000 $90,000 $120,000
0

2

4
x 10-5
0

Probability Distributions
where

Example and Plot. The following commands generate a plot of the negative
binomial pdf.

x = (0:10);
y = nbinpdf(x,3,0.5);
plot(x,y,'+')
set(gca,'XLim',[–0.5,10.5])

Normal Distribution

Background. The normal distribution is a two parameter family of curves. The
first parameter, µ, is the mean. The second, σ, is the standard deviation. The
standard normal distribution (written Φ(x)) sets µ to zero and σ to one.

Φ(x) is functionally related to the error function, erf.

The first use of the normal distribution was as a continuous approximation to
the binomial.

The usual justification for using the normal distribution for modeling is the
Central Limit Theorem which states (roughly) that the sum of independent
samples from any distribution with finite mean and variance converges to the
normal distribution as the sample size goes to infinity.

Mathematical Definition. The normal pdf is:

y f x r p,() r x 1–+
x 

  prqxI 0 1 …, ,() x()= =

q 1 p–=

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

erf x() 2Φ x 2() 1–=
1-31

1 Tutorial

1-3
Parameter Estimation. One of the first applications of the normal distribution in
data analysis was modeling the height of school children. Suppose we want to
estimate the mean, µ, and the variance, σ2, of all the 4th graders in the United
States.

We have already introduced MLEs. Another desirable criterion in a statistical
estimator is unbiasedness. A statistic is unbiased if the expected value of the
statistic is equal to the parameter being estimated. MLEs are not always
unbiased. For any data sample, there may be more than one unbiased
estimator of the parameters of the parent distribution of the sample. For
instance, every sample value is an unbiased estimate of the parameter µ of a
normal distribution. The Minimum Variance Unbiased Estimator (MVUE) is
the statistic that has the minimum variance of all unbiased estimators of a
parameter.

The MVUEs of the parameters, µ and σ2 for the normal distribution are the
sample average and variance. The sample average is also the MLE for µ. There
are two common textbook formulas for the variance.

They are:

Equation 1 is the maximum likelihood estimator for σ2, and equation 2 is the
MVUE.

y f x µ σ,()
1

σ 2π
---------------e

x µ–()– 2

2σ2----------------------

= =

1) s2 1
n---= xi x–()

2

i 1=

n

∑

2) s2 1
n 1–
------------- xi x–()

2

i 1=

n

∑

where x

=

xi
n----

n

∑=
2

Probability Distributions
The function normfit returns the MVUEs and confidence intervals for µ and
σ2. Here is a playful example modeling the “heights” (inches) of a randomly
chosen 4th grade class.

height = normrnd(50,2,30,1); % Simulate heights.
[mu, s, muci, sci] = normfit(height)
mu =
 50.2025
s =
 1.7946
muci =
 49.5210
 50.8841
sci =
 1.4292
 2.4125

Example and Plot. The plot shows the “bell” curve of the standard normal pdf
µ = 0, σ = 1.

Poisson Distribution

Background. The Poisson distribution is appropriate for applications that
involve counting the number of times a random event occurs in a given amount
of time, distance, area, etc. Sample applications that involve Poisson
distributions include the number of Geiger counter clicks per second, the
number of people walking into a store in an hour, and the number of flaws per
1000 feet of video tape.

The Poisson distribution is a one parameter discrete distribution that takes
nonnegative integer values. The parameter, λ, is both the mean and the

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4
1-33

1 Tutorial

1-3
variance of the distribution. Thus, as the size of the numbers in a particular
sample of Poisson random numbers gets larger, so does the variability of the
numbers.

As Poisson (1837) showed, the Poisson distribution is the limiting case of a
binomial distribution where N approaches infinity and p goes to zero while
Np = λ.

The Poisson and exponential distributions are related. If the number of counts
follows the Poisson distribution, then the interval between individual counts
follows the exponential distribution.

Mathematical Definition. The Poisson pdf is:

Parameter Estimation. The MLE and the MVUE of the Poisson parameter, λ, is the
sample mean. The sum of independent Poisson random variables is also
Poisson with parameter equal to the sum of the individual parameters. The
Statistics Toolbox makes use of this fact to calculate confidence intervals on λ.
As λ gets large the Poisson distribution can be approximated by a normal
distribution with µ = λ and σ2 = λ. The Statistics Toolbox uses this
approximation for calculating confidence intervals for values of λ greater than
100.

y f x λ()
λx

x!
-----e λ– I 0 1 K, ,() x()= =
4

Probability Distributions
Example and Plot. The plot shows the probability for each nonnegative integer
when λ = 5.

x = 0:15;
y = poisspdf(x,5);
plot(x,y,'+')

Rayleigh Distribution

Background. The Rayleigh distribution is a special case of the Weibull
distribution substituting 2 for the parameter p in the equation below:

If the velocity of a particle in the x and y directions are two independent normal
random variables with zero means and equal variances, then the distance the
particle travels per unit time is distributed Rayleigh.

Mathematical Definition. The Rayleigh pdf is:

0 5 10 15
0

0.05

0.1

0.15

0.2

y f x
b2

2------ p, 
  b2

2------pp 1– e

b2

2-----x p–
I 0 ∞,() x()= =

y f x b() x

b2------e

x2–

2b2--------- 
 

= =
1-35

1 Tutorial

1-3
Example and Plot. The following commands generate a plot of the Rayleigh pdf.

x = [0:0.01:2];
p = raylpdf(x,0.5);
plot(x,p)

Parameter Estimation. The MLE of the Rayleigh parameter is:

Student’s t Distribution

Background. The t distribution is a family of curves depending on a single
parameter ν (the degrees of freedom). As ν goes to infinity the t distribution
converges to the standard normal distribution.

W. S. Gossett (1908) discovered the distribution through his work at Guinness
brewery. At that time, Guinness did not allow its staff to publish, so Gossett
used the pseudonym Student.

If x and s are the mean and standard deviation of an independent random
sample of size n from a normal distribution with mean µ, and σ2 = n, then:

0 0.5 1 1.5 2
0

0.5

1

1.5

b

xi
2

i 1=

n

∑
2n------------------=

t ν() x µ–
s------------=

ν n 1–=
6

Probability Distributions
Mathematical Definition. Student’s t pdf is:

Example and Plot. The plot compares the t distribution with ν = 5 (solid line) to
the shorter tailed standard normal distribution (dashed line).

x = –5:0.1:5;
y = tpdf(x,5);
z = normpdf(x,0,1);
plot(x,y,'–',x,z,'–.')

Noncentral t Distribution

Background. The noncentral t distribution is a generalization of the familiar
Student’s t distribution.

If x and s are the mean and standard deviation of an independent random
sample of size n from a normal distribution with mean µ, and σ2 = n, then:

Suppose that the mean of the normal distribution is not µ. Then the ratio has
the noncentral t distribution. The noncentrality parameter is the difference
between the sample mean and µ.

y f x ν()
Γ

ν 1+
2------------ 

 

Γ
ν
2--- 

 

1
νπ

1

1
x2

ν-----+ 
 

ν 1+
2------------

-------------------------------= =

-5 0 5
0

0.1

0.2

0.3

0.4

t ν() x µ–
s------------=

ν n 1–=
1-37

1 Tutorial

1-3
The noncentral t distribution allows us to determine the probability that we
would detect a difference between x and µ in a t test. This probability is the
power of the test. As x–µ increases, the power of a test also increases.

Mathematical Definition. The most general representation of the noncentral t
distribution is quite complicated. Johnson and Kotz (1970) give a formula for
the probability that a noncentral t variate falls in the range [–t, t].

where I(x|a,b) is the incomplete beta function with parameters a and b.

Example and Plot. The following commands generate a plot of the noncentral t
pdf.

x = (–5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'– –',x,p1,'–')

Uniform (Continuous) Distribution

Background. The uniform distribution (also called rectangular) has a constant
pdf between its two parameters a, the minimum, and b, the maximum. The
standard uniform distribution (a = 0 and b =1) is a special case of the beta
distribution, setting both of its parameters to one.

Pr t–() x t< < ν δ,()()

1
2---δ2

 
 j

j!----------------e

δ2

2-----–

 
 
 
 
 

I x2

ν x2
+

1
2--- j+

ν
2---,

 
 
 

j 0=

∞

∑=

-5 0 5
0

0.2

0.4

0.6

0.8

1

8

Probability Distributions
The uniform distribution is appropriate for representing the distribution of
round-off errors in values tabulated to a particular number of decimal places.

Mathematical Definition. The uniform cdf is:

Parameter Estimation. The sample minimum and maximum are the MLEs of a
and b respectively.

Example and Plot. The example illustrates the inversion method for generating
normal random numbers using rand and norminv. Note that the MATLAB
function, randn, does not use inversion since it is not efficient for this case.

u = rand(1000,1);
x = norminv(u,0,1);
hist(x)

Weibull Distribution

Background. Waloddi Weibull (1939) offered the distribution that bears his
name as an appropriate analytical tool for modeling breaking strength of
materials. Current usage also includes reliability and lifetime modeling. The
Weibull distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If
f(t) and F(t) are the pdf and cdf of a distribution, then the hazard rate is:

p F x a b,()
x a–
b a–
------------I a b,[] x()= =

-4 -2 0 2 4
0

100

200

300

h t() f t()
1 F t()–
--------------------=
1-39

1 Tutorial

1-4
Substituting the pdf and cdf of the exponential distribution for f(t) and F(t)
above yields a constant. The example on the next page shows that the hazard
rate for the Weibull distribution can vary.

Mathematical Definition. The Weibull pdf is:

Parameter Estimation. Suppose we want to model the tensile strength of a thin
filament using the Weibull distribution. The function weibfit give MLEs and
confidence intervals for the Weibull parameters.

strength = weibrnd(0.5,2,100,1); % Simulated strengths.
[p, ci] = weibfit(strength)

p =

 0.4746 1.9582

ci =

 0.3851 1.6598
 0.5641 2.2565

The default 95% confidence interval for each parameter contains the “true”
value.

Example and Plot. The exponential distribution has a constant hazard function,
which is not generally the case for the Weibull distribution.

y f x a b,() abxb 1– e axb– I 0 ∞,() x()= =
0

Probability Distributions
The plot shows the hazard functions for exponential (dashed line) and Weibull
(solid line) distributions having the same mean life. The Weibull hazard rate
here increases with age (a reasonable assumption).

t = 0:0.1:3;
h1 = exppdf(t,0.6267)./(1 – expcdf(t,0.6267));
h2 = weibpdf(t,2,2)./(1 – weibcdf(t,2,2));
plot(t,h1,'– –',t,h2,'–')

0 0.5 1 1.5 2 2.5 3
0

5

10

15
1-41

1 Tutorial

1-4
Descriptive Statistics
Data samples can have thousands (even millions) of values. Descriptive
statistics are a way to summarize this data into a few numbers that contain
most of the relevant information.

Measures of Central Tendency (Location)
The purpose of measures of central tendency is to locate the data values on the
number line. In fact, another term for these statistics is measures of location.

The table gives the function names and descriptions.

The average is a simple and popular estimate of location. If the data sample
comes from a normal distribution, then the sample average is also optimal
(MVUE of µ).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real
data. The sample average is sensitive to these problems. One bad data value
can move the average away from the center of the rest of the data by an
arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to
outliers. The median is the 50th percentile of the sample, which will only
change slightly if you add a large perturbation to any value. The idea behind
the trimmed mean is to ignore a small percentage of the highest and lowest
values of a sample for determining the center of the sample.

Measures of Location

geomean Geometric Mean.

harmmean Harmonic Mean.

mean Arithmetic average (in MATLAB).

median 50th percentile (in MATLAB).

trimmean Trimmed Mean.
2

Descriptive Statistics
The geometric mean and harmonic mean, like the average, are not robust to
outliers. They are useful when the sample is distributed lognormal or heavily
skewed.

The example shows the behavior of the measures of location for a sample with
one outlier.

x = [ones(1,6) 100]

x =

1 1 1 1 1 1 100

locate = [geomean(x) harmmean(x) mean(x) median(x) ...
trimmean(x,25)]

locate =

 1.9307 1.1647 15.1429 1.0000 1.0000

You can see that the mean is far from any data value because of the influence
of the outlier. The median and trimmed mean ignore the outlying value and
describe the location of the rest of the data values.

Measures of Dispersion
The purpose of measures of dispersion is to find out how spread out the data
values are on the number line. Another term for these statistics is measures of
spread.

The table gives the function names and descriptions.

Measures of Dispersion

iqr Interquartile Range.

mad Mean Absolute Deviation.

range Range.
1-43

1 Tutorial

1-4
The range (the difference between the maximum and minimum values) is the
simplest measure of spread. But if there is an outlier in the data, it will be the
minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that
are optimal for normally distributed samples. The sample variance is the
MVUE of the normal parameter σ2. The standard deviation is the square root
of the variance and has the desirable property of being in the same units as the
data. That is, if the data is in meters the standard deviation is in meters as
well. The variance is in meters2, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data
value that is separate from the body of the data can increase the value of the
statistics by an arbitrarily large amount.

The Mean Absolute Deviation (MAD) is also sensitive to outliers. But the MAD
does not move quite as much as the standard deviation or variance in response
to bad data.

The Interquartile Range (IQR) is the difference between the 75th and 25th
percentile of the data. Since only the middle 50% of the data affects this
measure, it is robust to outliers.

The example below shows the behavior of the measures of dispersion for a
sample with one outlier.

x = [ones(1,6) 100]

x =

 1 1 1 1 1 1 100

stats = [iqr(x) mad(x) range(x) std(x)]

stats =

 0 24.2449 99.0000 37.4185

std Standard Deviation (in MATLAB).

var Variance.

Measures of Dispersion
4

Descriptive Statistics
Functions for Data with Missing Values (NaNs)
Most real-world datasets have one or more missing elements. It is convenient
to code missing entries in a matrix as NaN (Not a Number.)

Here is a simple example:

m = magic(3);
m([1 5 9]) = [NaN NaN NaN]

m =

 NaN 1 6
 3 NaN 7
 4 9 NaN

Simply removing any row with a NaN in it would leave us with nothing, but any
arithmetic operation involving NaN yields NaN as below.

sum(m)

ans =

 NaN NaN NaN

The NaN functions support the tabled arithmetic operations ignoring NaN.

nansum(m)

ans =

 7 10 13

NaN Functions

nanmax Maximum ignoring NaNs.

nanmean Mean ignoring NaNs.

nanmedian Median ignoring NaNs.

nanmin Minimum ignoring NaNs.
1-45

1 Tutorial

1-4
Percentiles and Graphical Descriptions
Trying to describe a data sample with two numbers, a measure of location and
a measure of spread, is frugal but may be misleading.

Another option is to compute a reasonable number of the sample percentiles.
This provides information about the shape of the data as well as its location
and spread.

The example shows the result of looking at every quartile of a sample
containing a mixture of two distributions.

x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];
p = 100*(0:0.25:1);
y = prctile(x,p);
z = [p; y]

z =

 0 25.0000 50.0000 75.0000 100.0000
 1.5172 4.6842 5.6706 6.1804 7.6035

Compare the first two quantiles to the rest.

nanstd Standard deviation ignoring NaNs.

nansum Sum ignoring NaNs.

NaN Functions
6

Descriptive Statistics
The box plot is a graph for descriptive statistics. The graph below is a box plot
of the data above.

boxplot(x)

The long lower tail and plus signs show the lack of symmetry in the sample
values. For more information on box plots see page 1-103.

The histogram is a complementary graph.

hist(x)

The Bootstrap
In the last decade the statistical literature has examined the properties of
resampling as a means to acquire information about the uncertainty of
statistical estimators.

The bootstrap is a procedure that involves choosing random samples with
replacement from a data set and analyzing each sample the same way.
Sampling with replacement means that every sample is returned to the data set
after sampling. So a particular data point from the original data set could

1

2

3

4

5

6

7

V
al

ue
s

Column Number

1 2 3 4 5 6 7 8
0

20

40

60

80

100
1-47

1 Tutorial

1-4
appear multiple times in a given bootstrap sample. The number of elements in
each bootstrap sample equals the number of elements in the original data set.
The range of sample estimates we obtain allows us to establish the uncertainty
of the quantity we are estimating.

Here is an example taken from Efron and Tibshirani (1993) comparing LSAT
scores and subsequent law school GPA for a sample of 15 law schools.

load lawdata
plot(lsat,gpa,'+')
lsline

The least squares fit line indicates that higher LSAT scores go with higher law
school GPAs. But how sure are we of this conclusion? The plot gives us some
intuition but nothing quantitative.

We can calculate the correlation coefficient of the variables using the corrcoef
function.

rhohat = corrcoef(lsat,gpa)

rhohat =

 1.0000 0.7764
 0.7764 1.0000

Now we have a number, 0.7764, describing the positive connection between
LSAT and GPA, but though 0.7764 may seem large, we still do not know if it is
statistically significant.

Using the bootstrp function we can resample the lsat and gpa vectors as
many times as we like and consider the variation in the resulting correlation
coefficients.

540 560 580 600 620 640 660 680
2.6

2.8

3

3.2

3.4

3.6
8

Descriptive Statistics
Here is an example:

rhos1000 = bootstrp(1000,'corrcoef',lsat,gpa);

This command resamples the lsat and gpa vectors 1000 times and computes
the corrcoef function on each sample. Here is a histogram of the result.

hist(rhos1000(:,2),30)

Nearly all the estimates lie on the interval [0.4 1.0].

This is strong quantitative evidence that LSAT and subsequent GPA are
positively correlated. Moreover, it does not require us to make any strong
assumptions about the probability distribution of the correlation coefficient.

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100
1-49

1 Tutorial

1-5
Cluster Analysis
Cluster analysis, also called segmentation analysis or taxonomy analysis, is a
way to partition a set of objects into groups, or clusters, in such a way that the
profiles of objects in the same cluster are very similar and the profiles of objects
in different clusters are quite distinct.

Cluster analysis can be performed on many different types of datasets. For
example, a dataset might contain a number of observations of subjects in a
study where each observation contains a set of variables.

Many different fields of study, such as engineering, zoology, medicine,
linguistics, anthropology, psychology, and marketing, have contributed to the
development of clustering techniques and the application of such techniques.
For example, cluster analysis can be used to find two similar groups for the
experiment and control groups in a study. In this way, if statistical differences
are found in the groups, they can be attributed to the experiment and not to
any initial difference between the groups.

Terminology and Basic Procedure
To perform cluster analysis on a dataset using the Statistics Toolbox functions,
follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects in
the dataset. In this step, you calculate the distance between objects using
the pdist function. The pdist function supports many different ways to
compute this measurement. See the section “Finding the Similarities
Between Objects” for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this step,
you link together pairs of objects that are in close proximity using the
linkage function. The linkage function uses the distance information
generated in step 1 to determine the proximity of objects to each other. As
objects are paired into binary clusters, the newly formed clusters are
grouped into larger clusters until a hierarchical tree is formed. See the
section “Defining the Links Between Objects” for more information.

3 Determine where to divide the hierarchical tree into clusters. In this
step, you divide the objects in the hierarchical tree into clusters using the
cluster function. The cluster function can create clusters by detecting
0

Cluster Analysis
natural groupings in the hierarchical tree or by cutting off the hierarchical
tree at an arbitrary point. See the section “Creating Clusters” for more
information.

The following sections provide more information about each of these steps.

Note The Statistics Toolbox includes a convenience function, clusterdata,
which performs all these steps for you. You do not need to execute the pdist,
linkage, or cluster functions separately. However, the clusterdata function
does not give you access to the options each of the individual routines offers.
For example, if you use the pdist function, you can choose the distance
calculation method.

Finding the Similarities Between Objects
You use the pdist function to calculate the distance between every pair of
objects in a dataset. For a dataset made up of m objects, there are

pairs in the dataset. The result of this computation is commonly
known as a similarity matrix (or dissimilarity matrix).

There are many ways to calculate this distance information. By default, the
pdist function calculates the Euclidean distance between objects; however,
you can specify one of several other options. See pdist for more information.

Note You can optionally normalize the values in the dataset before
calculating the distance information. In a real world dataset, variables can be
measured against different scales. For example, one variable can measure IQ
test scores and another variable measure head circumference. These
discrepancies can distort the proximity calculations. Using the zscore
function, you can convert all the values in the dataset to use the same
proportional scale. See the zscore function for more information.

m m 1–()⋅ 2⁄
1-51

1 Tutorial

1-5
For example, consider a data set, X, made up of five objects where each object
is a set of x,y coordinates.

You can define this dataset as a matrix, X = [1 2;2.5 4.5;2 2;4 1.5;4 2.5],
and pass it to pdist. The pdist function calculates the distance between object
1 and object 2, object 1 and object 3, and so on until the distances between all
the pairs have been calculated. The following figure plots these objects in a
graph. The distance between object 2 and object 3 is shown to illustrate one
interpretation of distance.

Object Value

1 1 2

2 2.5 4.5

3 2 2

4 4 1.5

5 4 2.5

1

1

5

2 43

4

3

2

5

distance

1 3 4

5

2

2

Cluster Analysis
Returning Distance Information
The pdist function returns this distance information in a vector, Y,where each
element contains the distance between a pair of objects.

Y = pdist(X)
Y =
 Columns 1 through 7
 2.9155 1.0000 3.0414 3.0414 2.5495 3.3541 2.5000
 Columns 8 through 10
 2.0616 2.0616 1.0000

To make it easier to see the relationship between the distance information
generated by pdist and the objects in the original dataset, you can reformat
the distance vector into a matrix using the squareform function. In this matrix,
element i,j corresponds to the distance between object i and object j in the
original dataset. In the following example, element 1,1 represents the distance
between object 1 and itself (which is zero). Element 1,2 represents the distance
between object 1 and object 2, and so on.

squareform(Y)
ans =
 0 2.9155 1.0000 3.0414 3.0414
 2.9155 0 2.5495 3.3541 2.5000
 1.0000 2.5495 0 2.0616 2.0616
 3.0414 3.3541 2.0616 0 1.0000
 3.0414 2.5000 2.0616 1.0000 0

Defining the Links Between Objects
Once the proximity between objects in the dataset has been computed, you can
determine which objects in the data set should be grouped together into
clusters, using the linkage function. The linkage function takes the distance
information generated by pdist and links pairs of objects that are close
together into binary clusters (clusters made up of two objects). The linkage
function then links these newly formed clusters to other objects to create bigger
clusters until all the objects in the original data set are linked together in a
hierarchical tree.
1-53

1 Tutorial

1-5
For example, given the distance vector, Y, generated by pdist from the sample
dataset of x and y coordinates, the linkage function generates a hierarchical
cluster tree, returning the linkage information in a matrix, Z.

Z = linkage(Y)
Z =
 1.0000 3.0000 1.0000
 4.0000 5.0000 1.0000
 6.0000 7.0000 2.0616
 8.0000 2.0000 2.5000

In this output, each row identifies a link. The first two columns identify the
objects that have been linked, that is, object 1, object 2, and so on. The third
column contains the distance between these objects. For the sample dataset of
x and y coordinates, the linkage function begins by grouping together objects
1 and 3, which have the closest proximity (distance value = 1.0000). The
linkage function continues by grouping objects 4 and 5, which also have a
distance value of 1.0000.

The third row indicates that the linkage function grouped together objects 6
and 7. If our original sample dataset contained only 5 objects, what are objects
6 and 7? Object 6 is the newly formed binary cluster created by the grouping of
objects 1 and 3. When the linkage function groups two objects together into a
new cluster, it must assign the cluster a unique index value, starting with the
value m+1, where m is the number of objects in the original dataset. (Values 1
through m are already used by the original dataset.) Object 7 is the index for
the cluster formed by objects 4 and 5.

As the final cluster, the linkage function grouped object 8, the newly formed
cluster made up of objects 6 and 7, with object 2 from the original dataset. The
4

Cluster Analysis
following figure graphically illustrates the way linkage groups the objects into
a hierarchy of clusters.

The hierarchical, binary cluster tree created by the linkage function is most
easily understood when viewed graphically. The Statistics Toolbox includes the
dendrogram function that plots this hierarchical tree information as a graph,
as in the following example.

dendrogram(Z)

1

1

5

2 43

4

3

2

5

6
7

8

1

2

3
4

5

0.5

1

2.5

3 54

2

1.5

1

2

1-55

1 Tutorial

1-5
In the figure, the numbers along the horizontal axis represent the indices of the
objects in the original dataset. The links between objects are represented as
upside down U-shaped lines. The height of the U indicates the distance
between the objects. For example, the link representing the cluster containing
objects 1 and 3 has a height of 1. For more information about creating a
dendrogram diagram, see the dendrogram function reference page.

Evaluating Cluster Formation
After linking the objects in a dataset into a hierarchical cluster tree, you may
want to verify that the tree represents significant similarity groupings. In
addition, you may want more information about the links between the objects.
The Statistics Toolbox provides functions to perform both these tasks.

Verifying the Cluster Tree
One way to measure the validity of the cluster information generated by the
linkage function is to compare it with the original proximity data generated by
the pdist function. If the clustering is valid, the linking of objects in the cluster
tree should have a strong correlation with the distances between objects in the
distance vector. The cophenet function compares these two sets of values and
computes their correlation, returning a value called the cophenetic correlation
coefficient. The closer the value of the cophenetic correlation coefficient is to 1,
the better the clustering solution.

You can use the cophenetic correlation coefficient to compare the results of
clustering the same dataset using different distance calculation methods or
clustering algorithms.

For example, you can use the cophenet function to evaluate the clusters
created for the sample dataset

c = cophenet(Z,Y)
c =
 0.8573

where Z is the matrix output by the linkage function and Y is the distance
vector output by the pdist function.
6

Cluster Analysis
Execute pdist again on the same dataset, this time specifying the City Block
metric. After running the linkage function on this new pdist output, use the
cophenet function to evaluate the clustering using a different distance metric.

c = cophenet(Z,Y)

c =
0.9289

The cophenetic correlation coefficient shows a stronger correlation when the
City Block metric is used.

Getting More Information about Cluster Links
One way to determine the natural cluster divisions in a dataset is to compare
the length of each link in a cluster tree with the lengths of neighboring links
below it in the tree.

If a link is approximately the same length as neighboring links, it indicates
that there are similarities between the objects joined at this level of the
hierarchy. These links are said to exhibit a high level of consistency.

If the length of a link differs from neighboring links, it indicates that there are
dissimilarities between the objects at this level in the cluster tree. This link is
said to be inconsistent with the links around it. In cluster analysis,
inconsistent links can indicate the border of a natural division in a dataset. The
cluster function uses a measure of inconsistency to determine where to divide
a dataset into clusters. (See “Creating Clusters” for more information.)

To illustrate, the following example creates a dataset of random numbers with
three deliberate natural groupings. In the dendrogram, note how the objects
tend to collect into three groups. These three groups are then connected by
three longer links. These longer links are inconsistent when compared with the
links below them in the hierarchy.
1-57

1 Tutorial

1-5
rand('seed',3)
X = [rand(10,2)+1;rand(10,2)+2;rand(10,2)+3];
Y = pdist(X);
Z = linkage(Y);
dendrogram(Z);

The relative consistency of each link in a hierarchical cluster tree can be
quantified and expressed as the inconsistency coefficient. This value compares
the length of a link in a cluster hierarchy with the average length of
neighboring links. If the object is consistent with those around it, it will have a
low inconsistency coefficient. If the object is inconsistent with those around it,
it will have a higher inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link the cluster
tree, use the inconsistent function. The inconsistent function compares

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

23 25 29 30 27 28 26 24 21 22 11 12 15 13 16 18 20 14 17 19 1 2 7 3 6 8 9 10 4 5

These links show consistency

These links show inconsistency, when compared to links below them.
8

Cluster Analysis
each link in the cluster hierarchy with adjacent links two levels below it in the
cluster hierarchy. This is called the depth of the comparison. Using the
inconsistent function, you can specify other depths. The objects at the bottom
of the cluster tree, called leaf nodes, that have no further objects below them,
have an inconsistency coefficient of zero.

For example, returning to the sample dataset of x and y coordinates, let’s use
the inconsistent function to calculate the inconsistency values for the links
created by the linkage function, described in “Defining the Links Between
Objects” on page 1-53.

I = inconsistent(Z)
I =
 1.0000 0 1.0000 0
 1.0000 0 1.0000 0
 1.3539 0.8668 3.0000 0.8165
 2.2808 0.3100 2.0000 0.7071

The inconsistent function returns data about the links in an m-1 by 4 matrix
where each column provides data about the links.

In the sample output, the first row represents the link between objects 1 and 3.
(This cluster is assigned the index 6 by the linkage function.) Because this a
leaf node, the inconsistency coefficient is zero. The second row represents the
link between objects 4 and 5, also a leaf node. (This cluster is assigned the
index 7 by the linkage function.)

The third row evaluates the link that connects these two leaf nodes, objects 6
and 7. (This cluster is called object 8 in the linkage output). Column three
indicates that three links are considered in the calculation: the link itself and
the two links directly below it in the hierarchy. Column one represents the
mean of the lengths of these links. The inconsistent function uses the length

Column Description

1 Mean of the lengths of all the links included in the calculation.

2 Standard deviation of all the links included in the calculation.

3 Number of links included in the calculation.

4 Inconsistency coefficient.
1-59

1 Tutorial

1-6
information output by the linkage function to calculate the mean. Column two
represents the standard deviation between the links. The last column contains
the inconsistency value for these links, 0.8165.

The following figure illustrates the links and lengths included in this
calculation.

Row four in the output matrix describes the link between object 8 and object 2.
Column three indicates that two links are included in this calculation: the link
itself and the link directly below it in the hierarchy. The inconsistency
coefficient for this link is 0.7071.

0.5

1

2.5

3 54

2

1.5

1

2

Link 1

Lengths

Link 2

Link 3
0

Cluster Analysis
The following figure illustrates the links and lengths included in this
calculation.

Creating Clusters
After you create the hierarchical tree of binary clusters, you can divide the
hierarchy into larger clusters using the cluster function. The cluster
function lets you create clusters in two ways:

• By finding the natural divisions in the original data set

• By specifying an arbitrary number of clusters

Finding the Natural Divisions in the Dataset
In the hierarchical cluster tree, the dataset may naturally align itself into
clusters. This can be particularly evident in a dendrogram diagram where
groups of objects are densely packed in certain areas and not in others. The
inconsistency coefficient of the links in the cluster tree can identify these points
where the similarities between objects change. (See “Evaluating Cluster
Formation” for more information about the inconsistency coefficient.) You can
use this value to determine where the cluster function draws cluster
boundaries.

0.5

1

2.5

3 54

2

1.5

1

2

Link 1

Lengths

Link 2
1-61

1 Tutorial

1-6
For example, if you use the cluster function to group the sample dataset into
clusters, specifying an inconsistency coefficient threshold of 0.9 as the value of
the cutoff argument, the cluster function groups all the objects in the sample
dataset into one cluster. In this case, none of the links in the cluster hierarchy
had an inconsistency coefficient greater than 0.9.

T = cluster(Z,0.9)
T =
 1
 1
 1
 1
 1

The cluster function outputs a vector, T, that is the same size as the original
dataset. Each element in this vector contains the number of the cluster into
which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster function
divides the sample dataset into three separate clusters.

T = cluster(Z,0.8)
T =

1
3
1
2
2

This output indicates that objects 1 and 3 were placed in cluster 1, objects 4 and
5 were placed in cluster 2, and object 2 was placed in cluster 3.

Specifying Arbitrary Clusters
Instead of letting the cluster function create clusters determined by the
natural divisions in the data set, you can specify the number of clusters you
want created. In this case, the value of the cutoff argument specifies the point
in the cluster hierarchy at which to create the clusters.
2

Cluster Analysis
For example, you can specify that you want the cluster function to divide the
sample dataset into two clusters. In this case, the cluster function creates one
cluster containing objects 1, 3, 4, and 5 and another cluster containing object 2.

T = cluster(Z,2)
T =

1
2
1
1
1

To help you visualize how the cluster function determines how to create these
clusters, the following figure shows the dendrogram of the hierarchical cluster
tree. When you specify a value of 2, the cluster function draws an imaginary
horizontal line across the dendrogram that bisects two vertical lines. All the
objects below the line belong to one of these two clusters.

0.5

1

2.5

3 54

2

1.5

1

2

cutoff = 2
1-63

1 Tutorial

1-6
If you specify a cutoff value of 3, the cluster function cuts off the hierarchy
at a lower point, bisecting three lines.

T = cluster(Z,3)
T =

1
3
1
2
2

This time, objects 1 and 3 are grouped in a cluster, objects 4 and 5 are grouped
in a cluster and object 2 is placed into a cluster, as seen in the following figure.

0.5

1

2.5

3 54

2

1.5

1

2

cutoff = 3
4

Linear Models
Linear Models
Linear models are problems that take the form

where:

• y is an n by 1 vector of observations.

• X is the n by p design matrix for the model.

• β is a p by 1 vector of parameters.

• ε is an n by 1 vector of random disturbances.

One-way analysis of variance (ANOVA), two-way ANOVA, polynomial
regression, and multiple linear regression are specific cases of the linear model.

One-Way Analysis of Variance (ANOVA)
The purpose of a one-way ANOVA is to find out whether data from several
groups have a common mean. That is, to determine whether the groups are
actually different in the measured characteristic.

One-way ANOVA is a simple special case of the linear model. The one-way
ANOVA form of the model is

where:

• yij is a matrix of observations.

• α.j is a matrix whose columns are the group means. (The “dot j” notation
means that α applies to all rows of the jth column.)

• εij is a matrix of random disturbances.

The model posits that the columns of y are a constant plus a random
disturbance. You want to know if the constants are all the same.

The data below comes from a study by Hogg and Ledolter (1987) of bacteria
counts in shipments of milk. The columns of the matrix hogg represent
different shipments. The rows are bacteria counts from cartons of milk chosen

y Xβ ε+=

yij α.j εij+=
1-65

1 Tutorial

1-6
randomly from each shipment. Do some shipments have higher counts than
others?

load hogg
p = anova1(hogg)

p =

 1.1971e–04

hogg

hogg =

 24 14 11 7 19
 15 7 9 7 24
 21 12 7 4 19
 27 17 13 7 15
 33 14 12 12 10
 23 16 18 18 20

The standard ANOVA table has columns for the sums of squares, degrees of
freedom, mean squares (SS/df), and F statistic.

You can use the F statistic to do a hypothesis test to find out if the bacteria
counts are the same. anova1 returns the p-value from this hypothesis test.

In this case the p-value is about 0.0001, a very small value. This is a strong
indication that the bacteria counts from the different tankers are not the same.
An F statistic as extreme as the observed F would occur by chance only once in
10,000 times if the counts were truly equal.

The p-value returned by anova1 depends on assumptions about the random
disturbances in the model equation. For the p-value to be correct, these

ANOVA Table

Source SS df MS F
Columns 803 4 200.7 9.008
Error 557.2 25 22.29
Total 1360 29
6

Linear Models
disturbances need to be independent, normally distributed and have constant
variance.

You can get some graphic assurance that the means are different by looking at
the box plots in the second figure window displayed by anova1.

Since the notches in the box plots do not all overlap, this is strong confirming
evidence that the column means are not equal.

Two-Way Analysis of Variance (ANOVA)
The purpose of two-way ANOVA is to find out whether data from several
groups have a common mean. One-way ANOVA and two-way ANOVA differ in
that the groups in two-way ANOVA have two categories of defining
characteristics instead of one.

Suppose an automobile company has two factories that both make three models
of car. It is reasonable to ask if the gas mileage in the cars varies from factory
to factory as well as model to model.

There could be an overall difference in mileage due to a difference in the
production methods between factories. There is probably a difference in the
mileage of the different models (irrespective of the factory) due to differences
in design specifications. These effects are called additive.

Finally, a factory might make high mileage cars in one model (perhaps because
of a superior production line), but not be different from the other factory for
other models. This effect is called an interaction. It is impossible to detect an
interaction unless there are duplicate observations for some combination of
factory and car model.

1 2 3 4 5

5

10

15

20

25

30

V
al

ue
s

Column Number
1-67

1 Tutorial

1-6
Two-way ANOVA is a special case of the linear model. The two-way ANOVA
form of the model is

where:

• yijk is a matrix of observations.

• µ is a constant matrix of the overall mean.

• α.j is a matrix whose columns are the group means (the rows of α sum to 0).

• βi. is a matrix whose rows are the group means (the columns of β sum to 0).

• γij is a matrix of interactions (the rows and columns of γ sum to zero).

• εijk is a matrix of random disturbances.

The purpose of the example is to determine the effect of car model and factory
on the mileage rating of cars.

load mileage
mileage

mileage =

 33.3000 34.5000 37.4000
 33.4000 34.8000 36.8000
 32.9000 33.8000 37.6000
 32.6000 33.4000 36.6000
 32.5000 33.7000 37.0000
 33.0000 33.9000 36.7000

cars = 3;
p = anova2(mileage,cars)

p =

 0.0000 0.0039 0.8411

There are three models of cars (columns) and two factories (rows). The reason
there are six rows instead of two is that each factory provides three cars of each
model for the study. The data from the first factory is in the first three rows,
and the data from the second factory is in the last three rows.

yijk µ α.j βi . γij εijk+ + + +=
8

Linear Models
The standard ANOVA table has columns for the sums of squares, degrees of
freedom, mean squares (SS/df), and F statistics.

You can use the F statistics to do hypotheses tests to find out if the mileage is
the same across models, factories, and model-factory pairs (after adjusting for
the additive effects). anova2 returns the p-value from these tests.

The p-value for the model effect is zero to four decimal places. This is a strong
indication that the mileage varies from one model to another. An F statistic as
extreme as the observed F would occur by chance less than once in 10,000 times
if the gas mileage were truly equal from model to model.

The p-value for the factory effect is 0.0039, which is also highly significant.
This indicates that one factory is out-performing the other in the gas mileage
of the cars it produces. The observed p-value indicates that an F statistic as
extreme as the observed F would occur by chance about four out of 1000 times
if the gas mileage were truly equal from factory to factory.

There does not appear to be any interaction between factories and models. The
p-value, 0.8411, means that the observed result is quite likely (84 out 100
times) given that there is no interaction.

The p-values returned by anova2 depend on assumptions about the random
disturbances in the model equation. For the p-values to be correct these
disturbances need to be independent, normally distributed and have constant
variance.

Multiple Linear Regression
The purpose of multiple linear regression is to establish a quantitative
relationship between a group of predictor variables (the columns of X) and a
response, y. This relationship is useful for:

ANOVA Table

Source SS df MS F
Columns 53.35 2 26.68 234.2
Rows 1.445 1 1.445 12.69
Interaction 0.04 2 0.02 0.1756
Error 1.367 12 0.1139
Total 56.2 17
1-69

1 Tutorial

1-7
• Understanding which predictors have the most effect.

• Knowing the direction of the effect (i.e., increasing x increases/decreases y).

• Using the model to predict future values of the response when only the
predictors are currently known.

The linear model takes its common form

where:

• y is an n by 1 vector of observations.

• X is an n by p matrix of regressors.

• β is a p by 1 vector of parameters.

• ε is an n by 1 vector of random disturbances.

The solution to the problem is a vector, b, which estimates the unknown vector
of parameters, β. The least-squares solution is:

This equation is useful for developing later statistical formulas, but has poor
numeric properties. regress uses QR decomposition of X followed by the
backslash operator to compute b. The QR decomposition is not necessary for
computing b, but the matrix, R, is useful for computing confidence intervals.

You can plug b back into the model formula to get the predicted y values at the
data points.

Statisticians use a hat (circumflex) over a letter to denote an estimate of a
parameter or a prediction from a model. The projection matrix H, is called the
hat matrix, because it puts the “hat” on y.

The residuals are the difference between the observed and predicted y values.

y Xβ ε+=

b β̂ X'X()
1–

X'y= =

ŷ Xb Hy= =

H X X'X()
1–

X'=

r y ŷ–= I H–()= y
0

Linear Models
The residuals are useful for detecting failures in the model assumptions, since
they correspond to the errors, ε, in the model equation. By assumption, these
errors each have independent normal distributions with mean zero and a
constant variance.

The residuals, however, are correlated and have variances that depend on the
locations of the data points. It is a common practice to scale (“Studentize”) the
residuals so they all have the same variance.

In the equation below, the scaled residual, ti, has a Student’s t distribution with
(n–p) degrees of freedom.

where:

• ti is the scaled residual for the ith data point.

• ri is the raw residual for the ith data point.

• n is the sample size.

• p is the number of parameters in the model.

• hi is the ith diagonal element of H.

The left-hand side of the second equation is the estimate of the variance of the
errors excluding the ith data point from the calculation.

A hypothesis test for outliers involves comparing ti with the critical values of
the t distribution. If ti is large, this casts doubt on the assumption that this
residual has the same variance as the others.

A confidence interval for the mean of each error is:

ti

ri

σ̂ i() 1 hi–
----------------------------=

σ̂
2

i()
r 2

n p– 1–

ri
2

n p– 1–() 1 hi–()---–=

ci ri t
1

α
2--- ν,– 

 
± σ̂ i() 1 hi–=
1-71

1 Tutorial

1-7
Confidence intervals that do not include zero are equivalent to rejecting the
hypothesis (at a significance probability of α) that the residual mean is zero.
Such confidence intervals are good evidence that the observation is an outlier
for the given model.

Example
The example comes from Chatterjee and Hadi (1986) in a paper on regression
diagnostics. The dataset (originally from Moore (1975)) has five predictor
variables and one response.

load moore
X = [ones(size(moore,1),1) moore(:,1:5)];

The matrix, X, has a column of ones, then one column of values for each of the
five predictor variables. The column of ones is necessary for estimating the
y-intercept of the linear model.

y = moore(:,6);
[b,bint,r,rint,stats] = regress(y,X);

The y-intercept is b(1), which corresponds to the column index of the column
of ones.

stats

stats =

 0.8107 11.9886 0.0001

The elements of the vector stats are the regression R2 statistic, the F statistic
(for the hypothesis test that all the regression coefficients are zero), and the
p-value associated with this F statistic.
2

Linear Models
R2 is 0.8107 indicating the model accounts for over 80% of the variability in the
observations. The F statistic of about 12 and its p-value of 0.0001 indicate that
it is highly unlikely that all of the regression coefficients are zero.

rcoplot(r,rint)

The plot shows the residuals plotted in case order (by row). The 95% confidence
intervals about these residuals are plotted as error bars. The first observation
is an outlier since its error bar does not cross the zero reference line.

Quadratic Response Surface Models
Response Surface Methodology (RSM) is a tool for understanding the
quantitative relationship between multiple input variables and one output
variable.

Consider one output, z, as a polynomial function of two inputs, x and y..z = f(x,y)
describes a two dimensional surface in the space (x,y,z). Of course, you can have
as many input variables as you want and the resulting surface becomes a
hyper-surface.

For three inputs (x1, x2, x3) the equation of a quadratic response surface is:

y = b0 + b1x1 + b2x2 + b3x3 + ... (linear terms)

b12x1x2 + b13x1x3 + b23x2x3 + ... (interaction terms)

b11x1
2 + b22x2

2 + b33x3
2 (quadratic terms)

It is difficult to visualize a k-dimensional surface in k+1 dimensional space
when k>2. The function rstool is a GUI designed to make this visualization
more intuitive.

0 5 10 15 20

-0.5

0

0.5
R

es
id

ua
ls

Case Number
1-73

1 Tutorial

1-7
Exploring Graphs of Multidimensional Polynomials
The function rstool is useful for fitting response surface models. The purpose
of rstool is larger than just fitting and prediction for polynomial models. This
GUI provides an environment for exploration of the graph of a
multidimensional polynomial.

You can learn about rstool by trying the commands below. The chemistry
behind the data in reaction.mat deals with reaction kinetics as a function of
the partial pressure of three chemical reactants: hydrogen, n-pentane, and
isopentane.

load reaction
rstool(reactants,rate,'quadratic',0.01,xn,yn)

You will see a “vector” of three plots. The dependent variable of all three plots
is the reaction rate. The first plot has hydrogen as the independent variable.
The second and third plots have n-pentane and isopentane respectively.

Each plot shows the fitted relationship of the reaction rate to the independent
variable at a fixed value of the other two independent variables. The fixed
value of each independent variable is in an editable text box below each axis.
You can change the fixed value of any independent variable by either typing a
new value in the box or by dragging any of the 3 vertical lines to a new position.

When you change the value of an independent variable, all the plots update to
show the current picture at the new point in the space of the independent
variables.

Note that while this example only uses three reactants, rstool can
accommodate an arbitrary number of independent variables. Interpretability
may be limited by the size of the monitor for large numbers of inputs.

The GUI also has two pop-up menus. The Export menu facilitates saving
various important variables in the GUI to the base workspace. Below the
Export menu there is another menu that allows you to change the order of the
polynomial model from within the GUI. If you used the commands above, this
menu will have the string Full Quadratic. Other choices are:

• Linear – has the constant and first order terms only.

• Pure Quadratic – includes constant, linear and squared terms.

• Interactions – includes constant, linear, and cross product terms.
4

Linear Models
Stepwise Regression
Stepwise regression is a technique for choosing the variables to include in a
multiple regression model. Forward stepwise regression starts with no model
terms. At each step it adds the most statistically significant term (the one with
the highest F statistic or lowest p-value) until there are none left. Backward
stepwise regression starts with all the terms in the model and removes the
least significant terms until all the remaining terms are statistically
significant. It is also possible to start with a subset of all the terms and then
add significant terms or remove insignificant terms.

An important assumption behind the method is that some input variables in a
multiple regression do not have an important explanatory effect on the
response. If this assumption is true, then it is a convenient simplification to
keep only the statistically significant terms in the model.

One common problem in multiple regression analysis is multicollinearity of the
input variables. The input variables may be as correlated with each other as
they are with the response. If this is the case, the presence of one input variable
in the model may mask the effect of another input. Stepwise regression used as
a canned procedure is a dangerous tool because the resulting model may
include different variables depending on the choice of starting model and
inclusion strategy.

The Statistics Toolbox uses an interactive graphical user interface (GUI) to
provide a more understandable comparison of competing models. You can
explore the GUI using the Hald (1960) data set. Here are the commands to get
started.

load hald
stepwise(ingredients,heat)

The Hald data come from a study of the heat of reaction of various cement
mixtures. There are 4 components in each mixture, and the amount of heat
produced depends on the amount of each ingredient in the mixture.

Stepwise Regression Interactive GUI
The interface consists of three interactively linked figure windows:

• The Stepwise Regression Plot

• The Stepwise Regression Diagnostics Table

• The Stepwise History Plot
1-75

1 Tutorial

1-7
All three windows have hot regions. When your mouse is above one of these
regions, the pointer changes from an arrow to a circle. Clicking on this point
initiates some activity in the interface.

Stepwise Regression Plot
This plot shows the regression coefficient and confidence interval for every
term (in or out of the model). The green lines represent terms in the model
while red lines indicate that the term is not currently in the model.

Statistically significant terms are solid lines. Dotted lines show that the fitted
coefficient is not significantly different from zero.

Clicking on a line in this plot toggles its state. That is, a term in the model
(green line) gets removed (turns red), and terms out of the model (red line)
enter the model (turn green).

The coefficient for a term out of the model is the coefficient resulting from
adding that term to the current model.

Scale Inputs. Pressing this button centers and normalizes the columns of the
input matrix to have a standard deviation of one.

Export. This pop-up menu allows you to export variables from the stepwise
function to the base workspace.

Close. The Close button removes all the figure windows.

Stepwise Regression Diagnostics Figure
This table is a quantitative view of the information in the Stepwise Regression
Plot. The table shows the Hald model with the second and third terms removed.
6

Linear Models
Coefficients and Confidence Intervals. The table at the top of the figure shows the
regression coefficient and confidence interval for every term (in or out of the
model.) The green rows in the table (on your monitor) represent terms in the
model while red rows indicate terms not currently in the model.

Clicking on a row in this table toggles the state of the corresponding term. That
is, a term in the model (green row) gets removed (turns red), and terms out of
the model (red rows) enter the model (turn green).

The coefficient for a term out of the model is the coefficient resulting from
adding that term to the current model.

Additional Diagnostic Statistics. There are also several diagnostic statistics at the
bottom of the table:

• RMSE - the root mean squared error of the current model.

• R-square - the amount of response variability explained by the model.

• F - the overall F statistic for the regression.

• P - the associated significance probability.

Close Button. Shuts down all windows.

Help Button. Activates online help.

Confidence Intervals

Column #

RMSE

Parameter

R-square

Lower

F

Upper

P

 1 1.44 1.02 1.86

 2.734 0.9725 176.6 1.581e-08

 2 0.4161 -0.1602 0.9924

 2.734 0.9725 176.6 1.581e-08

 3 -0.41 -1.029 0.2086

 2.734 0.9725 176.6 1.581e-08

 4 -0.614 -0.7615 -0.4664

 2.734 0.9725 176.6 1.581e-08
1-77

1 Tutorial

1-7
Stepwise History. This plot shows the RMSE and a confidence interval for every
model generated in the course of the interactive use of the other windows.

Recreating a Previous Model. Clicking on one of these lines re-creates the current
model at that point in the analysis using a new set of windows. You can thus
compare the two candidate models directly.
8

Nonlinear Regression Models
Nonlinear Regression Models
Response Surface Methodology (RSM) is an empirical modeling approach using
polynomials as local approximations to the true input/output relationship. This
empirical approach is often adequate for process improvement in an industrial
setting.

In scientific applications there is usually relevant theory that allows us to
make a mechanistic model. Often such models are nonlinear in the unknown
parameters. Nonlinear models are more difficult to fit, requiring iterative
methods that start with an initial guess of the unknown parameters. Each
iteration alters the current guess until the algorithm converges.

Mathematical Form
The Statistics Toolbox has functions for fitting nonlinear models of the form

where:

• y is an n by 1 vector of observations.

• f is any function of X and β.
• X is an n by p matrix of input variables.

• β is a p by 1 vector of unknown parameters to be estimated.

• ε is an n by 1 vector of random disturbances.

Nonlinear Modeling Example
The Hougen-Watson model (Bates and Watts 1988) for reaction kinetics is one
specific example of this type. The form of the model is:

where β1, β2,...,β5 are the unknown parameters, and x1, x2, and x3 are the three
input variables. The three inputs are hydrogen, n-pentane, and isopentane. It
is easy to see that the parameters do not enter the model linearly.

y f X β,() ε+=

rate
β1 x2⋅ x3 β5⁄–

1 β2 x1⋅ β3 x2⋅ β4 x3⋅+ + +
--=
1-79

1 Tutorial

1-8
The file reaction.mat contains simulated data from this reaction.

load reaction
who
Your variables are:

beta rate xn
model reactants yn

where:

• rate is a vector of observed reaction rates 13 by 1.

• reactants is a three column matrix of reactants 13 by 3.

• beta is vector of initial parameter estimates 5 by 1.

• 'model' is a string containing the nonlinear function name.

• 'xn' is a string matrix of the names of the reactants.

• 'yn' is a string containing the name of the response.

Fitting the Hougen-Watson Model
The Statistics Toolbox provides the function nlinfit for finding parameter
estimates in nonlinear modeling. nlinfit returns the least-squares parameter
estimates. That is, it finds the parameters that minimize the sum of the
squared differences between the observed responses and their fitted values. It
uses the Gauss-Newton algorithm with Levenberg-Marquardt modifications
for global convergence.

nlinfit requires the input data, the responses, and an initial guess of the
unknown parameters. You must also supply a function that takes the input
data and the current parameter estimate and returns the predicted responses.
In MATLAB this is called a “function” function.
0

Nonlinear Regression Models
Here is the hougen function:

function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
% YHAT = HOUGEN(BETA,X) gives the predicted values of the
% reaction rate, YHAT, as a function of the vector of
% parameters, BETA, and the matrix of data, X.
% BETA must have 5 elements and X must have three
% columns.
%
% The model form is:
% y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)
%
% Reference:
% [1] Bates, Douglas, and Watts, Donald, "Nonlinear
% Regression Analysis and Its Applications", Wiley
% 1988 p. 271-272.

% Copyright (c) 1993-97 by The MathWorks, Inc.
% B.A. Jones 1-06-95.

b1 = beta(1);
b2 = beta(2);
b3 = beta(3);
b4 = beta(4);
b5 = beta(5);

x1 = x(:,1);
x2 = x(:,2);
x3 = x(:,3);

yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);
1-81

1 Tutorial

1-8
To fit the reaction data, call the function nlinfit:

load reaction
betahat = nlinfit(reactants,rate,'hougen',beta)

betahat =

 1.2526
 0.0628
 0.0400
 0.1124
 1.1914

nlinfit has two optional outputs. They are the residuals and Jacobian matrix
at the solution. The residuals are the differences between the observed and
fitted responses. The Jacobian matrix is the direct analog of the matrix, X, in
the standard linear regression model.

These outputs are useful for obtaining confidence intervals on the parameter
estimates and predicted responses.

Confidence Intervals on the Parameter Estimates
Using nlparci, form 95% confidence intervals on the parameter estimates,
betahat, from the reaction kinetics example.

[betahat,f,J] = nlinfit(reactants,rate,'hougen',beta);
betaci = nlparci(betahat,f,J)

betaci =

 –0.7467 3.2519
 –0.0377 0.1632
 –0.0312 0.1113
 –0.0609 0.2857
 –0.7381 3.1208
2

Nonlinear Regression Models
Confidence Intervals on the Predicted Responses
Using nlpredci, form 95% confidence intervals on the predicted responses
from the reaction kinetics example.

[yhat, delta] = nlpredci('hougen',reactants,betahat,f,J);
opd = [rate yhat delta]

opd =

 8.5500 8.2937 0.9178
 3.7900 3.8584 0.7244
 4.8200 4.7950 0.8267
 0.0200 –0.0725 0.4775
 2.7500 2.5687 0.4987
 14.3900 14.2227 0.9666
 2.5400 2.4393 0.9247
 4.3500 3.9360 0.7327
 13.0000 12.9440 0.7210
 8.5000 8.2670 0.9459
 0.0500 –0.1437 0.9537
 11.3200 11.3484 0.9228
 3.1300 3.3145 0.8418

The matrix, opd, has the observed rates in column 1 and the predictions in
column 2. The 95% confidence interval is column 2 ± column 3. Note that the
confidence interval contains the observations in each case.

An Interactive GUI for Nonlinear Fitting and Prediction
The function nlintool for nonlinear models is a direct analog of rstool for
polynomial models. nlintool requires the same inputs as nlinfit. nlintool
calls nlinfit.

The purpose of nlintool is larger than just fitting and prediction for nonlinear
models. This GUI provides an environment for exploration of the graph of a
multidimensional nonlinear function.

If you have already loaded reaction.mat, you can start nlintool:

nlintool(reactants,rate,'hougen',beta,0.01,xn,yn)
1-83

1 Tutorial

1-8
You will see a “vector” of three plots. The dependent variable of all three plots
is the reaction rate. The first plot has hydrogen as the independent variable.
The second and third plots have n-pentane and isopentane respectively.

Each plot shows the fitted relationship of the reaction rate to the independent
variable at a fixed value of the other two independent variables. The fixed
value of each independent variable is in an editable text box below each axis.
You can change the fixed value of any independent variable by either typing a
new value in the box or by dragging any of the 3 vertical lines to a new position.

When you change the value of an independent variable, all the plots update to
show the current picture at the new point in the space of the independent
variables.

Note that while this example only uses three reactants, nlintool, can
accommodate an arbitrary number of independent variables. Interpretability
may be limited by the size of the monitor for large numbers of inputs.
4

Hypothesis Tests
Hypothesis Tests
A hypothesis test is a procedure for determining if an assertion about a
characteristic of a population is reasonable.

For example, suppose that someone says that the average price of a gallon of
regular unleaded gas in Massachusetts is $1.15. How would you decide
whether this statement is true? You could try to find out what every gas station
in the state was charging and how many gallons they were selling at that price.
That approach might be definitive, but it could end up costing more than the
information is worth.

A simpler approach is to find out the price of gas at a small number of randomly
chosen stations around the state and compare the average price to $1.15.

Of course, the average price you get will probably not be exactly $1.15 due to
variability in price from one station to the next. Suppose your average price
was $1.18. Is this three cent difference a result of chance variability, or is the
original assertion incorrect? A hypothesis test can provide an answer.

Terminology
To get started, there are some terms to define and assumptions to make.

• The null hypothesis is the original assertion. In this case the null hypothesis
is that the average price of a gallon of gas is $1.15. The notation is H0: µ =
1.15.

• There are three possibilities for the alternative hypothesis. You might only be
interested in the result if gas prices were actually higher. In this case, the
alternative hypothesis is H1: µ > 1.15. The other possibilities are H1: µ < 1.15
and H1: µ ≠ 1.15.

• The significance level is related to the degree of certainty you require in order
to reject the null hypothesis in favor of the alternative. By taking a small
sample you cannot be certain about your conclusion. So you decide in
advance to reject the null hypothesis if the probability of observing your
sampled result is less than the significance level. For a typical significance
level of 5% the notation is α = 0.05. For this significance level, the probability
of incorrectly rejecting the null hypothesis when it is actually true is 5%. If
you need more protection from this error, then choose a lower value of α.
1-85

1 Tutorial

1-8
• The p-value is the probability of observing the given sample result under the
assumption that the null hypothesis is true. If the p-value is less than α, then
you reject the null hypothesis. For example, if α = 0.05 and the p-value is
0.03, then you reject the null hypothesis.

The converse is not true. If the p-value is greater than α, you do not accept
the null hypothesis. You just have insufficient evidence to reject the null
hypothesis (which is the same for practical purposes).

• The outputs for the hypothesis test functions also include confidence
intervals. Loosely speaking, a confidence interval is a range of values that
have a chosen probability of containing the true hypothesized quantity.
Suppose, in our example, 1.15 is inside a 95% confidence interval for the
mean, µ. That is equivalent to being unable to reject the null hypothesis at a
significance level of 0.05. Conversely if the 100(1 – α) confidence interval
does not contain 1.15, then you reject the null hypothesis at the α level of
significance.

Assumptions
The difference between hypothesis test procedures often arises from
differences in the assumptions that the researcher is willing to make about the
data sample. The Z-test assumes that the data represents independent
samples from the same normal distribution and that you know the standard
deviation, σ. The t-test has the same assumptions except that you estimate the
standard deviation using the data instead of specifying it as a known quantity.

Both tests have an associated signal-to-noise ratio:

The signal is the difference between the average and the hypothesized mean.
The noise is the standard deviation posited or estimated.

If the null hypothesis is true, then Z has a standard normal distribution,
N(0,1). T has a Student’s t distribution with the degrees of freedom, ν, equal to
one less than the number of data values.

z
x µ–

σ------------ or T
x µ–

s------------==

where x
xi
n----

i 1=

n

∑=
6

Hypothesis Tests
Given the observed result for Z or T, and knowing their distribution assuming
the null hypothesis is true, it is possible to compute the probability (p-value) of
observing this result. If the p-value is very small, then that casts doubt on the
truth of the null hypothesis. For example, suppose that the p-value was 0.001,
meaning that the probability of observing the given Z (or T) was one in a
thousand. That should make you skeptical enough about the null hypothesis
that you reject it rather than believe that your result was just a lucky 999 to 1
shot.

Example
This example uses the gasoline price data in gas.mat. There are two samples
of 20 observed gas prices for the months of January and February 1993.

load gas
prices = [price1 price2]

prices =

 119 118
 117 115
 115 115
 116 122
 112 118
 121 121
 115 120
 122 122
 116 120
 118 113
 109 120
 112 123
 119 121
 112 109
 117 117
 113 117
 114 120
 109 116
 109 118
 118 125
1-87

1 Tutorial

1-8
Suppose it is historically true that the standard deviation of gas prices at gas
stations around Massachusetts is four cents a gallon. The Z-test is a procedure
for testing the null hypothesis that the average price of a gallon of gas in
January (price1) is $1.15.

[h,pvalue,ci] = ztest(price1/100,1.15,0.04)

h =

 0

pvalue =

 0.8668

ci =

 1.1340 1.1690

The result of the hypothesis test is the boolean variable, h. When h = 0, you do
not reject the null hypothesis.

The result suggests that $1.15 is reasonable. The 95% confidence interval
[1.1340 1.1690] neatly brackets $1.15.

What about February? Try a t-test with price2. Now you are not assuming
that you know the standard deviation in price.

[h,pvalue,ci] = ttest(price2/100,1.15)

h =

 1

pvalue =

 4.9517e-04

ci =

 1.1675 1.2025
8

Hypothesis Tests
With the boolean result, h = 1, you can reject the null hypothesis at the default
significance level, 0.05.

It looks like $1.15 is not a reasonable estimate of the gasoline price in
February. The low end of the 95% confidence interval is greater than 1.15.

The function ttest2 allows you to compare the means of the two data samples.

[h,sig,ci] = ttest2(price1,price2)

h =

 1

sig =

 0.0083

ci =

 –5.7845 –0.9155

The confidence interval (ci above) indicates that gasoline prices were between
one and six cents lower in January than February.
1-89

1 Tutorial

1-9
The box plot gives the same conclusion graphically. Note that the notches have
little, if any, overlap. Refer to “Statistical Plots” for more information about box
plots.

boxplot(prices,1)
set(gca,'XtickLabel',str2mat('January','February'))
xlabel('Month')
ylabel('Prices ($0.01)')

January February

110

115

120

125

P
ric

es
 (

$0
.0

1)

Month
0

Multivariate Statistics
Multivariate Statistics
Multivariate statistics is an omnibus term for a number of different statistical
methods. The defining characteristic of these methods is that they all aim to
understand a data set by considering a group of variables together rather than
focusing on only one variable at a time.

Principal Components Analysis
One of the difficulties inherent in multivariate statistics is the problem of
visualizing multi-dimensionality. In MATLAB, the plot command displays a
graph of the relationship between two variables. The plot3 and surf
commands display different three-dimensional views. When there are more
than three variables, it stretches the imagination to visualize their
relationships.

Fortunately in data sets with many variables, groups of variables often move
together. One reason for this is that more than one variable may be measuring
the same driving principle governing the behavior of the system. In many
systems there are only a few such driving forces. But an abundance of
instrumentation allows us to measure dozens of system variables. When this
happens, we can take advantage of this redundancy of information. We can
simplify our problem by replacing a group of variables with a single new
variable.

Principal Components Analysis is a quantitatively rigorous method for
achieving this simplification. The method generates a new set of variables,
called principal components. Each principal component is a linear combination
of the original variables. All the principal components are orthogonal to each
other so there is no redundant information. The principal components as a
whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for
several columns of data. What is so special about the principal component
basis?

The first principal component is a single axis in space. When you project each
observation on that axis, the resulting values form a new variable. And the
variance of this variable is the maximum among all possible choices of the first
axis.
1-91

1 Tutorial

1-9
The second principal component is another axis in space, perpendicular to the
first. Projecting the observations on this axis generates another new variable.
The variance of this variable is the maximum among all possible choices of this
second axis.

The full set of principal components is as large as the original set of variables.
But, it is commonplace for the sum of the variances of the first few principal
components to exceed 80% of the total variance of the original data. By
examining plots of these few new variables, researchers often develop a deeper
understanding of the driving forces that generated the original data.

Example
Let us look at a sample application that uses nine different indices of the
quality of life in 329 U.S. cities. These are climate, housing, health, crime,
transportation, education, arts, recreation, and economics. For each index,
higher is better; so, for example, a higher index for crime means a lower crime
rate.

We start by loading the data in cities.mat.

load cities
whos
 Name Size Bytes Class

 categories 9x14 252 char array
 names 329x43 28294 char array
 ratings 329x9 23688 double array

Grand total is 17234 elements using 52234 bytes

The whos command generates a table of information about all the variables in
the workspace. The cities data set contains three variables:

• categories, a string matrix containing the names of the indices.

• names, a string matrix containing the 329 city names.

• ratings, the data matrix with 329 rows and 9 columns.
2

Multivariate Statistics
Let’s look at the value of the categories variable:

categories

categories =

climate
housing
health
crime
transportation
education
arts
recreation
economics

Now, let’s look at the first several rows of names variable, too.

first5 = names(1:5,:)

first5 =

Abilene, TX
Akron, OH
Albany, GA
Albany-Troy, NY
Albuquerque, NM

To get a quick impression of the ratings data, make a box plot.

boxplot(ratings,0,'+',0)
set(gca,'YTicklabel',categories)
1-93

1 Tutorial

1-9
These commands generate the plot below. Note that there is substantially more
variability in the ratings of the arts and housing than in the ratings of crime
and climate.

Ordinarily you might also graph pairs of the original variables, but there are
36 two-variable plots. Maybe principal components analysis can reduce the
number of variables we need to consider.

Sometimes it makes sense to compute principal components for raw data. This
is appropriate when all the variables are in the same units. Standardizing the
data is reasonable when the variables are in different units or when the
variance of the different columns is substantial (as in this case).

You can standardize the data by dividing each column by its standard
deviation.

stdr = std(ratings);
sr = ratings./stdr(ones(329,1),:);

Now we are ready to find the principal components.

[pcs, newdata, variances, t2] = princomp(sr);

0 1 2 3 4 5

x 104

climate

housing

health

crime

transportation

education

arts

recreation

economics

Values

C
ol

um
n

N
um

be
r

4

Multivariate Statistics
The Principal Components (First Output)
The first output of the princomp function, pcs, contains the nine principal
components. These are the linear combinations of the original variables that
generate the new variables.

Let’s look at the first three principal component vectors.

p3 = pcs(:,1:3)

p3 =

 0.2064 –0.2178 0.6900
 0.3565 –0.2506 0.2082
 0.4602 0.2995 0.0073
 0.2813 –0.3553 –0.1851
 0.3512 0.1796 –0.1464
 0.2753 0.4834 –0.2297
 0.4631 0.1948 0.0265
 0.3279 –0.3845 0.0509
 0.1354 –0.4713 –0.6073

The largest weights in the first column (first principal component) are the third
and seventh elements corresponding to the variables, arts and health. All the
elements of the first principal component are the same sign, making it a
weighted average of all the variables.

To show the orthogonality of the principal components note that
premultiplying them by their transpose yields the identity matrix.

I = p3'*p3

I =

 1.0000 0.0000 –0.0000
 0.0000 1.0000 –0.0000
 –0.0000 –0.0000 1.0000

The Component Scores (Second Output)
The second output, newdata, is the data in the new coordinate system defined
by the principal components. This output is the same size as the input data
matrix.
1-95

1 Tutorial

1-9
A plot of the first two columns of newdata shows the ratings data projected onto
the first two principal components.

plot(newdata(:,1),newdata(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');

Note the outlying points in the upper right corner.

The function gname is useful for graphically identifying a few points in a plot
like this. You can call gname with a string matrix containing as many case
labels as points in the plot. The string matrix names works for labeling points
with the city names.

gname(names)

Move your cursor over the plot and click once near each point at the top right.
When you finish press the return key. Here is the resulting plot.

-4 -2 0 2 4 6 8 10 12 14
-4

-3

-2

-1

0

1

2

3

4

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt
6

Multivariate Statistics
The labeled cities are the biggest population centers in the United States.
Perhaps we should consider them as a completely separate group. If we call
gname without arguments, it labels each point with its row number.

-4 -2 0 2 4 6 8 10 12 14
-4

-3

-2

-1

0

1

2

3

4

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

Los Angeles, Long Beach, CA

San Francisco, CA

Boston, MA

Washington, DC-MD-VA

Chicago, IL

New York, NY
1-97

1 Tutorial

1-9
We can create an index variable containing the row numbers of all the
metropolitan areas we chose.

metro = [43 65 179 213 234 270 314];
names(metro,:)
ans =

Boston, MA
Chicago, IL
Los Angeles, Long Beach, CA
New York, NY
Philadelphia, PA-NJ
San Francisco, CA
Washington, DC-MD-VA

-4 -2 0 2 4 6 8 10 12 14
-4

-3

-2

-1

0

1

2

3

4

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

213

270

179

 43

314

 65234
8

Multivariate Statistics
To remove these rows from the ratings matrix:

rsubset = ratings;
nsubset = names;
nsubset(metro,:) = [];
rsubset(metro,:) = [];
size(rsubset)

ans =

 322 9

To practice, repeat the analysis using the variable rsubset as the new data
matrix and nsubset as the string matrix of labels.

The Component Variances (Third Output)
The third output, variances, is a vector containing the variance explained by
the corresponding column of newdata.

variances

variances =

 3.4083
 1.2140
 1.1415
 0.9209
 0.7533
 0.6306
 0.4930
 0.3180
 0.1204
1-99

1 Tutorial

1-1
You can easily calculate the percent of the total variability explained by each
principal component.

percent_explained = 100*variances/sum(variances)
percent_explained =

 37.8699
 13.4886
 12.6831
 10.2324
 8.3698
 7.0062
 5.4783
 3.5338
 1.3378
00

Multivariate Statistics
A “Scree” plot is a pareto plot of the percent variability explained by each
principal component.

pareto(percent_explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')

We can see that the first three principal components explain roughly two thirds
of the total variability in the standardized ratings.

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Principal Component

V
ar

ia
nc

e
E

xp
la

in
ed

 (
%

)

1-101

1 Tutorial

1-1
Hotelling’s T2 (Fourth Output)
The last output of the princomp function, t2, is Hotelling’s T2, a statistical
measure of the multivariate distance of each observation from the center of the
data set. This is an analytical way to find the most extreme points in the data.

[st2, index] = sort(t2); % Sort in ascending order.
st2 = flipud(st2); % Values in descending order.
index = flipud(index); % Indices in descending order.
extreme = index(1)

extreme =

 213
names(extreme,:)

ans =

New York, NY

It is not surprising that the ratings for New York are the furthest from the
average U.S. town.
02

Statistical Plots
Statistical Plots
The Statistics Toolbox adds specialized plots to the extensive graphics
capabilities of MATLAB.

• Box plots are graphs for data sample description. They are also useful for
graphic comparisons of the means of many samples (see the discussion of
one-way ANOVA on page 1-65).

• Normal probability plots are graphs for determining whether a data sample
has normal distribution.

• Quantile-quantile plots graphically compare the distributions of two
samples.

• Weibull probability plots are graphs for assessing whether data comes from
a Weibull distribution.

Box Plots
The graph shows an example of a notched box plot.

This plot has several graphic elements:

• The lower and upper lines of the “box” are the 25th and 75th percentiles of
the sample. The distance between the top and bottom of the box is the
interquartile range.

• The line in the middle of the box is the sample median. If the median is not
centered in the box, that is an indication of skewness.

• The “whiskers” are lines extending above and below the box. They show the
extent of the rest of the sample (unless there are outliers). Assuming no

1

110

115

120

125

V
al

ue
s

Column Number
1-103

1 Tutorial

1-1
outliers, the maximum of the sample is the top of the upper whisker. The
minimum of the sample is the bottom of the lower whisker. By default, an
outlier is a value that is more than 1.5 times the interquartile range away
from the top or bottom of the box.

• The plus sign at the top of the plot is an indication of an outlier in the data.
This point may be the result of a data entry error, a poor measurement or a
change in the system that generated the data.

• The “notches” in the box are a graphic confidence interval about the median
of a sample. Box plots do not have notches by default.

A side-by-side comparison of two notched box plots is the graphical equivalent
of a t-test. See the section “Hypothesis Tests” on page 1-85.

Normal Probability Plots
A normal probability plot is a useful graph for assessing whether data comes
from a normal distribution. Many statistical procedures make the assumption
that the underlying distribution of the data is normal, so this plot can provide
some assurance that the assumption of normality is not being violated or
provide an early warning of a problem with your assumptions.
04

Statistical Plots
This example shows a typical normal probability plot.

x = normrnd(10,1,25,1);
normplot(x)

The plot has three graphic elements. The plus signs show the empirical
probability versus the data value for each point in the sample. The solid line
connects the 25th and 75th percentiles of the data and represents a robust
linear fit (i.e., insensitive to the extremes of the sample). The dashed line
extends the solid line to the ends of the sample.

The scale of the y-axis is not uniform. The y-axis values are probabilities and,
as such, go from zero to one. The distance between the tick marks on the y-axis
matches the distance between the quantiles of a normal distribution. The
quantiles are close together near the median (probability = 0.5) and stretch out
symmetrically moving away from the median. Compare the vertical distance
from the bottom of the plot to the probability 0.25 with the distance from 0.25
to 0.50. Similarly, compare the distance from the top of the plot to the
probability 0.75 with the distance from 0.75 to 0.50.

8.5 9 9.5 10 10.5 11 11.5
0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

Data

P
ro

ba
bi

lit
y

Normal Probability Plot
1-105

1 Tutorial

1-1
If all the data points fall near the line, the assumption of normality is
reasonable. But, if the data is nonnormal, the plus signs may follow a curve, as
in the example using exponential data below.

x = exprnd(10,100,1);
normplot(x)

This plot is clear evidence that the underlying distribution is not normal.

Quantile-Quantile Plots
A quantile-quantile plot is useful for determining whether two samples come
from the same distribution (whether normally distributed or not).

0 5 10 15 20 25 30 35 40 45
0.003

0.01
0.02

0.05
0.10

0.25

0.50

0.75

0.90
0.95

0.98
0.99

0.997

Data

P
ro

ba
bi

lit
y

Normal Probability Plot
06

Statistical Plots
The example shows a quantile-quantile plot of two samples from a Poisson
distribution.

x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);

Even though the parameters and sample sizes are different, the straight line
relationship shows that the two samples come from the same distribution.

Like the normal probability plot, the quantile-quantile plot has three graphic
elements. The pluses are the quantiles of each sample. By default the number
of pluses is the number of data values in the smaller sample. The solid line joins
the 25th and 75th percentiles of the samples. The dashed line extends the solid
line to the extent of the sample.

2 4 6 8 10 12 14 16 18
-2

0

2

4

6

8

10

12

X Quantiles

Y
 Q

ua
nt

ile
s

1-107

1 Tutorial

1-1
The example below shows what happens when the underlying distributions are
not the same.

x = normrnd(5,1,100,1);
y = weibrnd(2,0.5,100,1);
qqplot(x,y);

These samples clearly are not from the same distribution.

It is incorrect to interpret a linear plot as a guarantee that the two samples
come from the same distribution. But, for assessing the validity of a statistical
procedure that depends on the two samples coming from the same distribution,
a linear quantile-quantile plot should be sufficient.

Weibull Probability Plots
A Weibull probability plot is a useful graph for assessing whether data comes
from a Weibull distribution. Many reliability analyses make the assumption
that the underlying distribution of the life times is Weibull, so this plot can
provide some assurance that this assumption is not being violated or provide
an early warning of a problem with your assumptions.

The scale of the y-axis is not uniform. The y-axis values are probabilities and,
as such, go from zero to one. The distance between the tick marks on the y-axis
matches the distance between the quantiles of a Weibull distribution.

2 3 4 5 6 7 8
-2

0

2

4

6

8

10

12

14

16

X Quantiles

Y
 Q

ua
nt

ile
s

08

Statistical Plots
If the data points (pluses) fall near the line, the assumption that the data come
from a Weibull distribution is reasonable.

This example shows a typical Weibull probability plot.

y = weibrnd(2,0.5,100,1);
weibplot(y)

10-4 10-2 100

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75
0.90
0.96
0.99

Data

P
ro

ba
bi

lit
y

Weibull Probability Plot
1-109

1 Tutorial

1-1
Statistical Process Control (SPC)
SPC is an omnibus term for a number of methods for assessing and monitoring
the quality of manufactured goods. These methods are simple which makes
them easy to implement even in a production environment.

Control Charts
These graphs were popularized by Walter Shewhart in his work in the 1920s
at Western Electric. A control chart is a plot of a measurements over time with
statistical limits applied. Actually control chart is a slight misnomer. The chart
itself is actually a monitoring tool. The control activity may occur if the chart
indicates that the process is changing in an undesirable systematic direction.

The Statistics Toolbox supports three common control charts:

• Xbar charts

• S charts

• Exponentially weighted moving average (EWMA) charts.

Xbar Charts
Xbar charts are a plot of the average of a sample of a process taken at regular
intervals. Suppose we are manufacturing pistons to a tolerance of 0.5
10

Statistical Process Control (SPC)
thousandths of an inch. We measure the runout (deviation from circularity in
thousandths of an inch) at four points on each piston.

load parts
conf = 0.99;
spec = [–0.5 0.5];
xbarplot(runout,conf,spec)

The lines at the bottom and the top of the plot show the process specifications.
The central line is the average runout over all the pistons. The two lines
flanking the center line are the 99% statistical control limits. By chance only
one measurement in 100 should fall outside these lines. We can see that even
in this small run of 36 parts, there are several points outside the boundaries
(labeled by their observation numbers). This is an indication that the process
mean is not in statistical control. This might not be of much concern in practice,
since all the parts are well within specification.

S Charts
The S chart is a plot of the standard deviation of a process taken at regular
intervals. The standard deviation is a measure of the variability of a process.
So, the plot indicates whether there is any systematic change in the process

0 10 20 30 40

-0.4

-0.2

0

0.2

0.4

0.6

12

21 25
26

30

Xbar Chart

USL

LSL

Samples

M
ea

su
re

m
en

ts

LCL

UCL
1-111

1 Tutorial

1-1
variability. Continuing with the piston manufacturing example, we can look at
the standard deviation of each set of 4 measurements of runout.

schart(runout)

The average runout is about one ten-thousandth of an inch. There is no
indication of nonrandom variability.

EWMA Charts
The EWMA chart is another chart for monitoring the process average. It
operates on slightly different assumptions than the Xbar chart. The
mathematical model behind the Xbar chart posits that the process mean is
actually constant over time and any variation in individual measurements is
due entirely to chance.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
S Chart

Sample Number

S
ta

nd
ar

d
D

ev
ia

tio
n

UCL

LCL
12

Statistical Process Control (SPC)
The EWMA model is a little looser. Here we assume that the mean may be
varying in time. Here is an EWMA chart of our runout example. Compare this
with the plot on page 1-111.

ewmaplot(runout,0.5,0.01,spec)

Capability Studies
Before going into full-scale production, many manufacturers run a pilot study
to determine whether their process can actually build parts to the
specifications demanded by the engineering drawing.

0 5 10 15 20 25 30 35 40

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

21 2526

Exponentially Weighted Moving Average (EWMA) Chart

USL

LSL

Sample Number

E
W

M
A

UCL

LCL
1-113

1 Tutorial

1-1
Using the data from these capability studies with a statistical model allows us
to get a preliminary estimate of the percentage of parts that will fall outside
the specifications.

[p, Cp, Cpk] = capable(mean(runout),spec)

p =

 1.3940e–09

Cp =

 2.3950

Cpk =

 1.9812

The result above shows that the probability (p = 1.3940e–09) of observing an
unacceptable runout is extremely low. Cp and Cpk are two popular capability
indices.

Cp is the ratio of the range of the specifications to six times the estimate of the
process standard deviation.

For a process that has its average value on target, a Cp of one translates to a
little more than one defect per thousand. Recently many industries have set a
quality goal of one part per million. This would correspond to a Cp = 1.6. The
higher the value of Cp the more capable the process.

Cpk is the ratio of difference between the process mean and the closer
specification limit to three times the estimate of the process standard
deviation.

where the process mean is µ. For processes that do not maintain their average
on target, Cpk, is a more descriptive index of process capability.

Cp
USL LSL–

6σ--------------------------------=

Cpk min
USL µ–

3σ-----------------------
µ LSL–

3σ----------------------, 
 =
14

Design of Experiments (DOE)
Design of Experiments (DOE)
There is a world of difference between data and information. To extract
information from data you have to make assumptions about the system that
generated the data. Using these assumptions and physical theory you may be
able to develop a mathematical model of the system.

Generally, even rigorously formulated models have some unknown constants.
The goal of experimentation is to acquire data that allow us to estimate these
constants.

But why do we need to experiment at all? We could instrument the system we
want to study and just let it run. Sooner or later we would have all the data we
could use.

In fact, this is a fairly common approach. There are three characteristics of
historical data that pose problems for statistical modeling:

• Suppose we observe a change in the operating variables of a system followed
by a change in the outputs of the system. That does not necessarily mean
that the change in the system caused the change in the outputs.

• A common assumption in statistical modeling is that the observations are
independent of each other. This is not the way a system in normal operation
works.

• Controlling a system in operation often means changing system variables in
tandem. But if two variables change together, it is impossible to separate
their effects mathematically.

Designed experiments directly address these problems. The overwhelming
advantage of a designed experiment is that you actively manipulate the system
you are studying.

With DOE you may generate fewer data points than by using passive
instrumentation, but the quality of the information you get will be higher.

The Statistics Toolbox provides several functions for generating experimental
designs appropriate to various situations.
1-115

1 Tutorial

1-1
Full Factorial Designs
Suppose you want to determine whether the variability of a machining process
is due to the difference in the lathes that cut the parts or the operators who run
the lathes.

If the same operator always runs a given lathe then you cannot tell whether
the machine or the operator is the cause of the variation in the output. By
allowing every operator to run every lathe you can separate their effects.

This is a factorial approach. fullfact is the function that generates the design.
Suppose we have four operators and three machines. What is the factorial
design?

d = fullfact([4 3])

d =

 1 1
 2 1
 3 1
 4 1
 1 2
 2 2
 3 2
 4 2
 1 3
 2 3
 3 3
 4 3

Each row of d represents one operator/machine combination. Note that there
are 4*3 = 12 rows.
16

Design of Experiments (DOE)
One special subclass of factorial designs is when all the variables take only two
values. Suppose you want to quickly determine the sensitivity of a process to
high and low values of three variables.

d2 = ff2n(3)

d2 =
 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

There are 23 = 8 combinations to check.

Fractional Factorial Designs
One difficulty with factorial designs is that the number of combinations
increases exponentially with the number of variables you want to manipulate.

For example the sensitivity study discussed above might be impractical if there
were seven variables to study instead of just three. A full factorial design would
require 27 = 128 runs!
1-117

1 Tutorial

1-1
If we assume that the variables do not act synergistically in the system, we can
assess the sensitivity with far fewer runs. The theoretical minimum number is
eight. To see the design (X) matrix we use the hadamard function.

X = hadamard(8)

X =

 1 1 1 1 1 1 1 1
 1 –1 1 –1 1 –1 1 –1
 1 1 –1 –1 1 1 –1 –1
 1 –1 –1 1 1 –1 –1 1
 1 1 1 1 –1 –1 –1 –1
 1 –1 1 –1 –1 1 –1 1
 1 1 –1 –1 –1 –1 1 1
 1 –1 –1 1 –1 1 1 –1

The last seven columns are the actual variable settings (–1 for low, 1 for high.)
The first column (all ones) allows us to measure the mean effect in the linear
equation, .

D-Optimal Designs
All the designs above were in use by early in the 20th century. In the 1970s
statisticians started to use the computer in experimental design by recasting
DOE in terms of optimization. A D-optimal design is one that maximizes the
determinant of Fisher’s information matrix, X'X. This matrix is proportional to
the inverse of the covariance matrix of the parameters. So maximizing det(X'X)
is equivalent to minimizing the determinant of the covariance of the
parameters.

A D-optimal design minimizes the volume of the confidence ellipsoid of the
regression estimates of the linear model parameters, β.

There are several functions in the Statistics Toolbox that generate D-optimal
designs. These are cordexch, daugment, dcovary, and rowexch.

Generating D-Optimal Designs
cordexch and rowexch are two competing optimization algorithms for
computing a D-optimal design given a model specification.

y Xβ ε+=
18

Design of Experiments (DOE)
Both cordexch and rowexch are iterative algorithms. They operate by
improving a starting design by making incremental changes to its elements. In
the coordinate exchange algorithm, the increments are the individual elements
of the design matrix. In row exchange, the elements are the rows of the design
matrix. Atkinson and Donev (1992) is a reference.

To generate a D-optimal design you must specify the number of inputs, the
number of runs, and the order of the model you want to fit.

Both cordexch and rowexch take the following strings to specify the model:

• 'linear' ('l') – the default model with constant and first order terms.

• 'interaction' ('i') – includes constant, linear, and cross product terms.

• 'quadratic' ('q') – interactions plus squared terms.

• 'purequadratic' ('p') – includes constant, linear and squared terms.

Alternatively, you can use a matrix of integers to specify the terms. Details are
in the help for the utility function x2fx.

For a simple example using the coordinate-exchange algorithm consider the
problem of quadratic modeling with two inputs. The model form is:

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x1
2 + β22x2

2+ ε

Suppose we want the D-optimal design for fitting this model with nine runs.

settings = cordexch(2,9,'q')

settings =

 –1 1
 1 1
 0 1
 1 –1
 –1 –1
 0 –1
 1 0
 0 0
 –1 0
1-119

1 Tutorial

1-1
We can plot the columns of settings against each other to get a better picture
of the design.

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

For a simple example using the row-exchange algorithm, consider the
interaction model with two inputs. The model form is:

y = β0 + β1x1 + β2x2 + β12x1x2 + ε

Suppose we want the D-optimal design for fitting this model with four runs.

[settings, X] = rowexch(2,4,'i')

settings =

 –1 1
 –1 –1
 1 –1
 1 1

X =

 1 –1 1 –1
 1 –1 –1 1
 1 1 –1 –1
 1 1 1 1

-1 0 1
-1

0

1

20

Design of Experiments (DOE)
The settings matrix shows how to vary the inputs from run to run. The X matrix
is the design matrix for fitting the above regression model. The first column of
X is for fitting the constant term. The last column is the element-wise product
of the second and third columns.

The associated plot is simple but elegant.

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

Augmenting D-Optimal Designs
In practice, experimentation is an iterative process. We often want to add runs
to a completed experiment to learn more about our system. The function
daugment allows you choose these extra runs optimally.

-1 0 1
-1

0

1

1-121

1 Tutorial

1-1
Suppose we have executed the eight-run design below for fitting a linear model
to four input variables.

settings = cordexch(4,8)

settings =

 1 –1 1 1
 –1 –1 1 –1
 –1 1 1 1
 1 1 1 –1
 –1 1 –1 1
 1 –1 –1 1
 –1 –1 –1 –1
 1 1 –1 –1
22

Design of Experiments (DOE)
This design is adequate to fit the linear model for four inputs, but cannot fit the
six cross-product (interaction) terms. Suppose we are willing to do eight more
runs to fit these extra terms. Here’s how.

[augmented, X] = daugment(settings,8,'i');
augmented

augmented =

 1 –1 1 1
 –1 –1 1 –1
 –1 1 1 1
 1 1 1 –1
 –1 1 –1 1
 1 –1 –1 1
 –1 –1 –1 –1
 1 1 –1 –1
 –1 –1 –1 1
 1 1 1 1
 –1 –1 1 1
 –1 1 1 –1
 1 –1 1 –1
 1 –1 –1 –1
 –1 1 –1 –1
 1 1 –1 1
info = X'*X

info =

 16 0 0 0 0 0 0 0 0 0 0
 0 16 0 0 0 0 0 0 0 0 0
 0 0 16 0 0 0 0 0 0 0 0
 0 0 0 16 0 0 0 0 0 0 0
 0 0 0 0 16 0 0 0 0 0 0
 0 0 0 0 0 16 0 0 0 0 0
 0 0 0 0 0 0 16 0 0 0 0
 0 0 0 0 0 0 0 16 0 0 0
 0 0 0 0 0 0 0 0 16 0 0
 0 0 0 0 0 0 0 0 0 16 0
 0 0 0 0 0 0 0 0 0 0 16
1-123

1 Tutorial

1-1
The augmented design is orthogonal, since X'*X is a multiple of the identity
matrix. In fact, this design is the same as a 24 factorial design.

Designing Experiments with Uncontrolled Inputs
Sometimes it is impossible to control every experimental input. But you may
know the values of some inputs in advance. An example is the time each run
takes place. If a process is experiencing linear drift, you may want to include
the time of each test run as a variable in the model.

The function dcovary allows you to choose the settings for each run in order to
maximize your information despite a linear drift in the process.

Suppose we want to execute an eight-run experiment with three factors that is
optimal with respect to a linear drift in the response over time. First we create
our drift input variable. Note, that drift is normalized to have mean zero. Its
minimum is –1 and its maximum is +1.

drift = (linspace(–1,1,8))'
drift =

 –1.0000
 –0.7143
 –0.4286
 –0.1429
 0.1429
 0.4286
 0.7143
 1.0000

settings = dcovary(3,drift,'linear')
settings =

 1.0000 1.0000 –1.0000 –1.0000
 –1.0000 –1.0000 –1.0000 –0.7143
 –1.0000 1.0000 1.0000 –0.4286
 1.0000 –1.0000 1.0000 –0.1429
 –1.0000 1.0000 –1.0000 0.1429
 1.0000 1.0000 1.0000 0.4286
 –1.0000 –1.0000 1.0000 0.7143
 1.0000 –1.0000 –1.0000 1.0000
24

Demos
Demos
The Statistics Toolbox has demonstration programs that create an interactive
environment for exploring the probability distribution, random number
generation, curve fitting, and design of experiments functions.

The disttool Demo
disttool is a graphic environment for developing an intuitive understanding
of probability distributions.

The disttool demo has the following features:

• A graph of the cdf (pdf) for the given parameters of a distribution.

• A pop-up menu for changing the distribution function.

• A pop-up menu for changing the function type (cdf <–> pdf).

• Sliders to change the parameter settings.

• Data entry boxes to choose specific parameter values.

• Data entry boxes to change the limits of the parameter sliders.

• Draggable horizontal and vertical reference lines to do interactive evaluation
of the function at varying values.

• A data entry box to evaluate the function at a specific x-value.

• For cdf plots, a data entry box on the probability axis (y-axis) to find critical
values corresponding to a specific probability.

• A Close button to end the demonstration.

Demo Purpose

disttool Graphic interaction with probability distributions.

polytool Interactive graphic prediction of polynomial fits.

randtool Interactive control of random number generation.

rsmdemo Design of Experiments and regression modeling.
1-125

1 Tutorial

1-1
The polytool Demo
The polytool demo is an interactive graphic environment for polynomial curve
fitting and prediction.

The polytool demo has the following features:

• A graph of the data, the fitted polynomial, and global confidence bounds on
a new predicted value.

• y-axis text to display the predicted y-value and its uncertainty at the current
x-value.

• A data entry box to change the degree of the polynomial fit.

• A data entry box to evaluate the polynomial at a specific x-value.

• A draggable vertical reference line to do interactive evaluation of the
polynomial at varying x-values.

• A Close button to end the demonstration.

-8 -6 -4 -2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

function type
pop-up

cdf function

draggable vertical
reference line

parameter value

distributions
pop-up

cdf value

x value

parameter control

draggable horizontal
reference line

upper and lower
parameter bounds
26

Demos
You can use polytool to do curve fitting and prediction for any set of x-y data,
but, for the sake of demonstration, the Statistics Toolbox provides a dataset
(polydata.mat) to teach some basic concepts.

To start the demonstration you must first load the dataset.

load polydata
who
Your variables are:

x x1 y y1

The variables x and y are observations made with error from a cubic
polynomial. The variables x1 and y1 are data points from the “true” function
without error.

If you do not specify the degree of the polynomial, polytool does a linear fit to
the data.

polytool(x,y)

0 1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11

12

13

predicted value

box for controlling
polynomial degree

95% confidence interval

draggable reference
line

lower confidence
bound

fitted line

upper confidence
bound

x-value

data point
1-127

1 Tutorial

1-1
The linear fit is not very good. The bulk of the data with x-values between zero
and two has a steeper slope than the fitted line. The two points to the right are
dragging down the estimate of the slope.

Go to the data entry box at the top and type 3 for a cubic model. Then, drag the
vertical reference line to the x-value of two (or type 2 in the x-axis data entry
box).

This graph shows a much better fit to the data. The confidence bounds are
closer together indicating that there is less uncertainty in prediction. The data
at both ends of the plot tracks the fitted curve.

The true function in this case is cubic.

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

y 4 4.3444x 1.4533x2
– 0.1089x3 ε+ + +=

ε N 0 0.1I,()∼
28

Demos
To superimpose the “true” function on the plot use the command:

plot(x1,y1)

The true function is quite close to the fitted polynomial in the region of the
data. Between the two groups of data points the two functions separate, but
both fall inside the 95% confidence bounds.

If the cubic polynomial is a good fit, it is tempting to try a higher order
polynomial to see if even more precise predictions are possible.

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

“true” function

fitted polynomial
1-129

1 Tutorial

1-1
Since the true function is cubic, this amounts to overfitting the data. Use the
data entry box for degree and type 5 for a quintic model.

The resulting fit again does well predicting the function near the data points.
But, in the region between the data groups, the uncertainty of prediction rises
dramatically.

This bulge in the confidence bounds happens because the data really do not
contain enough information to estimate the higher order polynomial terms
precisely, so even interpolation using polynomials can be risky in some cases.

The randtool Demo
randtool is a graphic environment for generating random samples from
various probability distributions and displaying the sample histogram.

The randtool demo has the following features:

• A histogram of the sample.

• A pop-up menu for changing the distribution function.

• Sliders to change the parameter settings.

0 1 2 3 4 5 6 7 8 9 10

-15

-10

-5

0

5

10

15

20

25
30

Demos
• A data entry box to choose the sample size.

• Data entry boxes to choose specific parameter values.

• Data entry boxes to change the limits of the parameter sliders.

• An Output button to output the current sample to the variable ans.

• A Resample button to allow repetitive sampling with constant sample size
and fixed parameters.

• A Close button to end the demonstration

The rsmdemo Demo
rsmdemo is an interactive graphic environment that demonstrates design of
experiments and surface fitting through the simulation of a chemical reaction.
The goal of the demo is to find the levels of the reactants needed to maximize
the reaction rate.

-8 -6 -4 -2 0 2 4 6 8
0

5

10

15

20

25

parameter value

draw again from the same
distribution

output to variable
ans

parameter control

histogram

upper and lower
parameter bounds

sample size

distributions pop-up
1-131

1 Tutorial

1-1
There are two parts to the demo:

1 Compare data gathered through trial and error with data from a designed
experiment.

2 Compare response surface (polynomial) modeling with nonlinear modeling.

Part 1
Begin the demo by using the sliders in the Reaction Simulator to control the
partial pressures of three reactants: Hydrogen, n-Pentane, and Isopentane.
Each time you click the Run button, the levels for the reactants and results of
the run are entered in the Trial and Error Data window.

Based on the results of previous runs, you can change the levels of the
reactants to increase the reaction rate. (The results are determined using an
underlying model that takes into account the noise in the process, so even if you
keep all of the levels the same, the results will vary from run to run.) You are
allotted a budget of 13 runs. When you have completed the runs, you can use
the Plot menu on the Trial and Error Data window to plot the relationships
between the reactants and the reaction rate, or click the Analyze button. When
you click Analyze, rsmdemo calls the rstool function, which you can then use
to try to optimize the results.)

Next, perform another set of 13 runs, this time from a designed experiment. In
the Experimental Design Data window, click the Do Experiment button.
rsmdemo calls the cordexch function to generate a D-optimal design, and then,
for each run, computes the reaction rate.

Now use the Plot menu on the Experimental Design Data window to plot the
relationships between the levels of the reactants and the reaction rate, or click
the Response Surface button to call rstool to find the optimal levels of the
reactants.

Compare the analysis results for the two sets of data. It is likely (though not
certain) that you’ll find some or all of these differences:

• You can fit a full quadratic model with the data from the designed
experiment, but the trial and error data may be insufficient for fitting a
quadratic model or interactions model.

• Using the data from the designed experiment, you are more likely to be able
to find levels for the reactants that result in the maximum reaction rate.
32

Demos
Even if you find the best settings using the trial and error data, the
confidence bounds are likely to be wider than those from the designed
experiment.

Part 2
Now analyze the experimental design data with a polynomial model and a
nonlinear model, and comparing the results. The true model for the process,
which is used to generate the data, is actually a nonlinear model. However,
within the range of the data, a quadratic model approximates the true model
quite well.

To see the polynomial model, click the Response Surface button on the
Experimental Design Data window. rsmdemo calls rstool, which fits a full
quadratic model to the data. Drag the reference lines to change the levels of the
reactants, and find the optimal reaction rate. Observe the width of the
confidence intervals.

Now click the Nonlinear Model button on the Experimental Design Data
window. rsmdemo calls nlintool, which fits a Hougen-Watson model to the
data. As with the quadratic model, you can drag the reference lines to change
the reactant levels. Observe the reaction rate and the confidence intervals.

Compare the analysis results for the two models. Even though the true model
is nonlinear, you may find that the polynomial model provides a good fit.
Because polynomial models are much easier to fit and work with than
nonlinear models, a polynomial model is often preferable even when modeling
a nonlinear process. Keep in mind, however, that such models are unlikely to
be reliable for extrapolating outside the range of the data.
1-133

1 Tutorial

1-1
References
Atkinson, A. C., and A. N. Donev, Optimum Experimental Designs, Oxford
Science Publications 1992.

Bates, D. and D. Watts. Nonlinear Regression Analysis and Its Applications,
John Wiley and Sons. 1988. pp. 271–272.

Bernoulli, J., Ars Conjectandi, Basiliea: Thurnisius [11.19], 1713

Chatterjee, S. and A. S. Hadi. Influential Observations, High Leverage Points,
and Outliers in Linear Regression. Statistical Science, 1986. pp. 379–416.

Efron, B., and R. J. Tibshirani. An Introduction to the Bootstrap, Chapman and
Hall, New York. 1993.

Evans, M., N. Hastings, and B. Peacock. Statistical Distributions, Second
Edition. John Wiley and Sons, 1993.

Hald, A., Statistical Theory with Engineering Applications, John Wiley and
Sons, 1960. p. 647.

Hogg, R. V., and J. Ledolter. Engineering Statistics. MacMillan Publishing
Company, 1987.

Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate
Distributions. John Wiley and Sons, 1970.

Moore, J., Total Biochemical Oxygen Demand of Dairy Manures. Ph.D. thesis.
University of Minnesota, Department of Agricultural Engineering, 1975.

Poisson, S. D., Recherches sur la Probabilité des Jugements en Matiere
Criminelle et en Metière Civile, Précédées des Regles Générales du Calcul des
Probabilitiés. Paris: Bachelier, Imprimeur-Libraire pour les Mathematiques,
1837.

“Student,” On the Probable Error of the Mean. Biometrika, 6:1908. pp. 1–25.

Weibull, W., A Statistical Theory of the Strength of Materials. Ingeniors
Vetenskaps Akademiens Handlingar, Royal Swedish Institute for Engineering
Research. Stockholm, Sweden, No. 153. 1939.
34

2

Reference

2 Reference
The Statistics Toolbox provides several categories of functions. These catego-
ries appear in the table below.

The following pages contain tables of functions from each of these specific
areas. The first seven tables contain probability distribution functions. The
remaining tables describe the other categories of functions.

The Statistics Toolbox’s Main Categories of Functions

Probability Probability distribution functions.

Descriptive Descriptive statistics for data samples.

Plots Statistical plots.

SPC Statistical Process Control.

Cluster
Analysis

Grouping items with similar characteristics into
clusters.

Linear Fitting linear models to data.

Nonlinear Fitting nonlinear regression models.

DOE Design of Experiments.

PCA Principal Components Analysis.

Hypotheses Statistical tests of hypotheses.

File I/O Reading data from and writing data to operating-system
files.

Demos Demonstrations.

Data Data for examples.
2-2

Parameter Estimation

betafit Parameter estimation for the beta distribution.

betalike Beta log-likelihood function.

binofit Parameter estimation for the binomial distribution.

expfit Parameter estimation for the exponential distribution.

gamfit Parameter estimation for the gamma distribution.

gamlike Gamma log-likelihood function.

mle Maximum likelihood estimation.

normlike Normal log-likelihood function.

normfit Parameter estimation for the normal distribution.

poissfit Parameter estimation for the Poisson distribution.

unifit Parameter estimation for the uniform distribution.

Cumulative Distribution Functions (cdf)

betacdf Beta cdf.

binocdf Binomial cdf.

cdf Parameterized cdf routine.

chi2cdf Chi-square cdf.

expcdf Exponential cdf.

fcdf F cdf.

gamcdf Gamma cdf.

geocdf Geometric cdf.

hygecdf Hypergeometric cdf.
2-3

2 Reference
logncdf Lognormal cdf.

nbincdf Negative binomial cdf.

ncfcdf Noncentral F cdf.

nctcdf Noncentral t cdf.

ncx2cdf Noncentral Chi-square cdf.

normcdf Normal (Gaussian) cdf.

poisscdf Poisson cdf.

raylcdf Rayleigh cdf.

tcdf Student’s t cdf.

unidcdf Discrete uniform cdf.

unifcdf Continuous uniform cdf.

weibcdf Weibull cdf.

Probability Density Functions (pdf)

betapdf Beta pdf.

binopdf Binomial pdf.

chi2pdf Chi-square pdf.

exppdf Exponential pdf.

fpdf F pdf.

gampdf Gamma pdf.

geopdf Geometric pdf.

hygepdf Hypergeometric pdf.

Cumulative Distribution Functions (cdf) (Continued)
2-4

normpdf Normal (Gaussian) pdf.

lognpdf Lognormal pdf.

nbinpdf Negative binomial pdf.

ncfpdf Noncentral F pdf.

nctpdf Noncentral t pdf.

ncx2pdf Noncentral Chi-square pdf.

pdf Parameterized pdf routine.

poisspdf Poisson pdf.

raylpdf Rayleigh pdf.

tpdf Student’s t pdf.

unidpdf Discrete uniform pdf.

unifpdf Continuous uniform pdf.

weibpdf Weibull pdf.

Inverse Cumulative Distribution Functions

betainv Beta critical values.

binoinv Binomial critical values.

chi2inv Chi-square critical values.

expinv Exponential critical values.

finv F critical values.

gaminv Gamma critical values.

geoinv Geometric critical values.

Probability Density Functions (pdf) (Continued)
2-5

2 Reference
hygeinv Hypergeometric critical values.

logninv Lognormal critical values.

nbininv Negative binomial critical values

ncfinv Noncentral F critical values.

nctinv Noncentral t critical values.

ncx2inv Noncentral Chi-square critical values.

icdf Parameterized inverse distribution routine.

norminv Normal (Gaussian) critical values.

poissinv Poisson critical values.

raylinv Rayleigh critical values.

tinv Student’s t critical values.

unidinv Discrete uniform critical values.

unifinv Continuous uniform critical values.

weibinv Weibull critical values.

Random Number Generators

betarnd Beta random numbers.

binornd Binomial random numbers.

chi2rnd Chi-square random numbers.

exprnd Exponential random numbers.

frnd F random numbers.

gamrnd Gamma random numbers.

Inverse Cumulative Distribution Functions (Continued)
2-6

geornd Geometric random numbers.

hygernd Hypergeometric random numbers.

lognrnd Lognormal random numbers.

nbinrnd Negative binomial random numbers.

ncfrnd Noncentral F random numbers.

nctrnd Noncentral t random numbers.

ncx2rnd Noncentral Chi-square random numbers.

normrnd Normal (Gaussian) random numbers.

poissrnd Poisson random numbers.

raylrnd Rayleigh random numbers.

random Parameterized random number routine.

trnd Student’s t random numbers.

unidrnd Discrete uniform random numbers.

unifrnd Continuous uniform random numbers.

weibrnd Weibull random numbers.

Random Number Generators (Continued)
2-7

2 Reference
Moments of Distribution Functions

betastat Beta mean and variance.

binostat Binomial mean and variance.

chi2stat Chi-square mean and variance.

expstat Exponential mean and variance.

fstat F mean and variance.

gamstat Gamma mean and variance.

geostat Geometric mean and variance.

hygestat Hypergeometric mean and variance.

lognstat Lognormal mean and variance.

nbinstat Negative binomial mean and variance.

ncfstat Noncentral F mean and variance.

nctstat Noncentral t mean and variance.

ncx2stat Noncentral Chi-square mean and variance.

normstat Normal (Gaussian) mean and variance.

poisstat Poisson mean and variance.

raylstat Rayleigh mean and variance.

tstat Student’s t mean and variance.

unidstat Discrete uniform mean and variance.

unifstat Continuous uniform mean and variance.

weibstat Weibull mean and variance.
2-8

Descriptive Statistics

corrcoef Correlation coefficients (in MATLAB).

cov Covariance matrix (in MATLAB).

geomean Geometric mean.

harmmean Harmonic mean.

iqr Interquartile range.

kurtosis Sample kurtosis.

mad Mean absolute deviation.

mean Arithmetic average (in MATLAB).

median 50th percentile (in MATLAB).

moment Central moments of all orders.

nanmax Maximum ignoring missing data.

nanmean Average ignoring missing data.

nanmedian Median ignoring missing data.

nanmin Minimum ignoring missing data.

nanstd Standard deviation ignoring missing data.

nansum Sum ignoring missing data.

prctile Empirical percentiles of a sample.

range Sample range.

skewness Sample skewness.

std Standard deviation (in MATLAB).

trimmean Trimmed mean.

var Variance.
2-9

2 Reference
Statistical Plotting

boxplot Box plots.

errorbar Error bar plot.

fsurfht Interactive contour plot of a function.

gline Interactive line drawing.

gname Interactive point labeling.

lsline Add least-squares fit line to plotted data.

normplot Normal probability plots.

pareto Pareto charts.

qqplot Quantile-Quantile plots.

rcoplot Regression case order plot.

refcurve Reference polynomial.

refline Reference line.

surfht Interactive interpolating contour plot.

weibplot Weibull plotting.
2-10

Statistical Process Control

capable Quality capability indices.

capaplot Plot of process capability.

ewmaplot Exponentially weighted moving average plot.

histfit Histogram and normal density curve.

normspec Plot normal density between limits.

schart Time plot of standard deviation.

xbarplot Time plot of means.

Cluster Analysis

cluster Create clusters from linkage output.

clusterdata Create clusters from a dataset.

cophenet Calculate the cophenetic correlation coefficient.

dendrogram Plot a hierarchical tree in a dendrogram graph.

inconsistent Calculate the inconsistency values of objects in a cluster
hierarchy tree.

linkage Link objects in a dataset into a hierarchical tree of
binary clusters.

pdist Calculate the pairwise distance between objects in a
dataset.

squareform Reformat output of pdist function from vector to square
matrix.

zscore Normalize a dataset before calculating the distance.
2-11

2 Reference
Linear Models

anova1 One-way Analysis of Variance (ANOVA).

anova2 Two-way Analysis of Variance.

lscov Regression given a covariance matrix (in MATLAB).

polyconf Polynomial prediction with confidence intervals.

polyfit Polynomial fitting (in MATLAB).

polyval Polynomial prediction (in MATLAB).

regress Multiple linear regression.

ridge Ridge regression.

rstool Response surface tool.

stepwise Stepwise regression GUI.

Nonlinear Regression

nlinfit Nonlinear least-squares fitting.

nlintool Prediction graph for nonlinear fits.

nlparci Confidence intervals on parameters.

nlpredci Confidence intervals for prediction.

nnls Nonnegative least squares (in MATLAB).
2-12

Design of Experiments

cordexch D-optimal design using coordinate exchange.

daugment D-optimal augmentation of designs.

dcovary D-optimal design with fixed covariates.

ff2n Two-level full factorial designs.

fullfact Mixed level full factorial designs.

hadamard Hadamard designs (in MATLAB).

rowexch D-optimal design using row exchange.

Principal Components Analysis

barttest Bartlett’s test.

pcacov PCA from covariance matrix.

pcares Residuals from PCA.

princomp PCA from raw data matrix.

Hypothesis Tests

ranksum Wilcoxon rank sum test.

signrank Wilcoxon signed rank test.

signtest Sign test for paired samples.

ttest One sample t-test.

ttest2 Two sample t-test.

ztest Z-test.
2-13

2 Reference
File I/O

caseread Read casenames from a file.

casewrite Write casenames from a string matrix to a file.

tblread Retrieve tabular data from the file system.

tblwrite Write data in tabular form to the file system.

Demonstrations

disttool Interactive exploration of distribution functions.

randtool Interactive random number generation.

polytool Interactive fitting of polynomial models.

rsmdemo Interactive process experimentation and analysis.

statdemo Demonstrates capabilities of the Statistics Toolbox.

Data

census.mat U. S. Population 1790 to 1980.

cities.mat Names of U.S. metropolitan areas.

discrim.mat Classification data.

gas.mat Gasoline prices.

hald.mat Hald data.

hogg.mat Bacteria counts from milk shipments.

lawdata.mat GPA versus LSAT for 15 law schools.

mileage.mat Mileage data for three car models from two factories.
2-14

moore.mat Five factor – one response regression data.

parts.mat Dimensional runout on 36 circular parts.

popcorn.mat Data for popcorn example.

polydata.mat Data for polytool demo.

reaction.mat Reaction kinetics data.

sat.dat ASCII data for tblread example.

Data (Continued)
2-15

anova1
2-16

2anova1

2

Purpose One-way Analysis of Variance (ANOVA).

Syntax p = anova1(X)

p = anova1(x,group)

Description anova1(X) performs a balanced one-way ANOVA for comparing the means of
two or more columns of data on the sample in X. It returns the p-value for the
null hypothesis that the means of the columns of X are equal. If the p-value is
near zero, this casts doubt on the null hypothesis and suggests that the means
of the columns are, in fact, different.

anova1(x,group) performs a one-way ANOVA for comparing the means of two
or more samples of data in x indexed by the vector, group. The input, group,
identifies the group of the corresponding element of the vector x.

The values of group are integers with minimum equal to one and maximum
equal to the number of different groups to compare. There must be at least one
element in each group. This two-input form of anova1 does not require equal
numbers of elements in each group, so it is appropriate for unbalanced data.

The choice of a limit for the p-value to determine whether the result is
“statistically significant” is left to the researcher. It is common to declare a
result significant if the p-value is less than 0.05 or 0.01.

anova1 also displays two figures.

The first figure is the standard ANOVA table, which divides the variability of
the data in X into two parts:

• The variability due to the differences among the column means.

• The variability due to the differences between the data in each column and
the column mean.

The ANOVA table has five columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows the F statistic, which is the ratio of the MS’s.

anova1
The p-value is a function (fcdf) of F. As F increases the p-value decreases.

The second figure displays box plots of each column of X. Large differences in
the center lines of the box plots correspond to large values of F and
correspondingly small p-values.

Examples The five columns of x are the constants one through five plus a random normal
disturbance with mean zero and standard deviation one. The ANOVA
procedure detects the difference in the column means with great assurance.
The probability (p) of observing the sample x by chance given that there is no
difference in the column means is less than 6 in 100,000.

x = meshgrid(1:5)

x =

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

x = x + normrnd(0,1,5,5)

x =

2.1650 3.6961 1.5538 3.6400 4.9551
1.6268 2.0591 2.2988 3.8644 4.2011
1.0751 3.7971 4.2460 2.6507 4.2348
1.3516 2.2641 2.3610 2.7296 5.8617
0.3035 2.8717 3.5774 4.9846 4.9438

p = anova1(x)

p =

 5.9952e–05
2-17

anova1
The following example comes from a study of material strength in structural
beams Hogg (1987). The vector, strength, measures the deflection of a beam in
thousandths of an inch under 3,000 pounds of force. Stronger beams deflect
less. The civil engineer performing the study wanted to determine whether the
strength of steel beams was equal to the strength of two more expensive alloys.
Steel is coded 1 in the vector, alloy. The other materials are coded 2 and 3.

strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 ...
79 77 78 82 79];
alloy =[1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3];

ANOVA Table

Source SS df MS F
Columns 32.93 4 8.232 11.26
Error 14.62 20 0.7312
Total 47.55 24

1 2 3 4 5

1

2

3

4

5

6

V
al

ue
s

Column Number
2-18

anova1
Though alloy is sorted in this example, you do not need to sort the grouping
variable.

p = anova1(strength,alloy)
p =

1.5264e–04

The p-value indicates that the three alloys are significantly different. The box
plot confirms this graphically and shows that the steel beams deflect more than
the more expensive alloys.

References Hogg, R. V., and J. Ledolter. Engineering Statistics. MacMillan Publishing
Company, 1987.

ANOVA Table

Source SS df MS F
Columns 184.8 2 92.4 15.4
Error 102 17 6
Total 286.8 19

1 2 3

75

80

85

V
al

ue
s

Group Number
2-19

anova2
2anova2Purpose Two-way Analysis of Variance (ANOVA).

Syntax p = anova2(X,reps)

Description anova2(X,reps) performs a balanced two-way ANOVA for comparing the
means of two or more columns and two or more rows of the sample in X. The
data in different columns represent changes in one factor. The data in different
rows represent changes in the other factor. If there is more than one
observation per row-column pair, then the argument, reps, indicates the
number of observations per “cell.”

The matrix below shows the format for a set-up where the column factor has
two levels, the row factor has three levels, and there are two replications. The
subscripts indicate row, column and replicate, respectively.

anova2 returns the p-values for the null hypotheses that the means of the
columns and the means of the rows of X are equal. If any p-value is near zero,
this casts doubt on the null hypothesis and suggests that the means of the
source of variability associated with that p-value are, in fact, different.

The choice of a limit for the p-value to determine whether the result is
“statistically significant” is left to the researcher. It is common to declare a
result significant if the p-value is less than 0.05 or 0.01.

anova2 also displays a figure showing the standard ANOVA table, which
divides the variability of the data in X into three or four parts depending on the
value of reps:

• The variability due to the differences among the column means.

• The variability due to the differences among the row means.

x111 x121

x112 x122

x211 x221

x212 x222

x311 x321

x312 x322
2-20

anova2
• The variability due to the interaction between rows and columns (if reps is
greater than its default value of one.)

• The remaining variability not explained by any systematic source.

The ANOVA table has five columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows the F statistics, which is the ratio of the mean squares.

The p-value is a function (fcdf) of F. As F increases the p-value decreases.

Examples The data below comes from a study of popcorn brands and popper type (Hogg
1987). The columns of the matrix popcorn are brands (Gourmet, National, and
Generic). The rows are popper type (Oil and Air.) The study popped a batch of
2-21

anova2
each brand three times with each popper. The values are the yield in cups of
popped popcorn.

load popcorn
popcorn

popcorn =

 5.5000 4.5000 3.5000
 5.5000 4.5000 4.0000
 6.0000 4.0000 3.0000
 6.5000 5.0000 4.0000
 7.0000 5.5000 5.0000
 7.0000 5.0000 4.5000

p = anova2(popcorn,3)

p =

 0.0000 0.0001 0.7462

The vector, p, shows the p-values for the three brands of popcorn 0.0000, the
two popper types 0.0001, and the interaction between brand and popper type
0.7462. These values indicate that both popcorn brand and popper type affect
the yield of popcorn, but there is no evidence of a synergistic (interaction) effect
of the two.

The conclusion is that you can get the greatest yield using the Gourmet brand
and an Air popper (the three values located in popcorn(4:6,1)).

Reference Hogg, R. V. and J. Ledolter. Engineering Statistics. MacMillan Publishing
Company, 1987.

ANOVA Table

Source SS df MS F
Columns 15.75 2 7.875 56.7
Rows 4.5 1 4.5 32.4
Interaction 0.08333 2 0.04167 0.3
Error 1.667 12 0.1389
Total 22 17
2-22

barttest
2barttestPurpose Bartlett’s test for dimensionality.

Syntax ndim = barttest(x,alpha)

[ndim,prob,chisquare] = barttest(x,alpha)

Description ndim = barttest(x,alpha) returns the number of dimensions necessary to
explain the nonrandom variation in the the data matrix x, using the
significance probability alpha. The dimension is determined by a series of
hypothesis tests. The test for ndim = 1 tests the hypothesis that the variances
of the data values along each principal component are equal; the test for ndim
= 2 tests the hypothesis that the variances along the second through last
components are equal; and so on.

[ndim,prob,chisquare] = barttest(x,alpha) returns the number of
dimensions, the significance values for the hypothesis tests, and the χ2 values
associated with the tests.

Example x = mvnrnd([0 0], [1 0.99; 0.99 1],20);
x(:,3:4) = mvnrnd([0 0], [1 0.99; 0.99 1],20);
x(:,5:6) = mvnrnd([0 0], [1 0.99; 0.99 1],20);
[ndim, prob] = barttest(x,0.05)

ndim =

 3

prob =

 0
 0
 0
 0.5081
 0.6618
 1.0000

See Also princomp, pcacov, pcares
2-23

betacdf
2betacdfPurpose Beta cumulative distribution function (cdf).

Syntax P = betacdf(X,A,B)

Description betacdf(X,A,B) computes the beta cdf with parameters A and B at the values
in X. The arguments X, A, and B must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

The parameters A and B must both be positive and x must lie on the interval
[0 1].

The beta cdf is:

The result, p, is the probability that a single observation from a beta
distribution with parameters a and b will fall in the interval [0 x].

Examples x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = betacdf(x,a,b)

p =

0.0280 0.2160 0.5000 0.7840 0.9720

a = [1 2 3];
p = betacdf(0.5,a,a)

p =

0.5000 0.5000 0.5000

p F x a b,()
1

B a b,()------------------- ta 1–

0

x

∫ 1 t–()b 1– dt= =
2-24

betafit
2betafitPurpose Parameter estimates and confidence intervals for beta distributed data.

Syntax phat = betafit(x)

[phat,pci] = betafit(x,alpha)

Description betafit computes the maximum likelihood estimates of the parameters of the
beta distribution from the data in the vector, x. With two output parameters,
betafit also returns confidence intervals on the parameters, in the form of a
2-by-2 matrix. The first column of the matrix contains the lower and upper
confidence bounds for parameter A, and the second column contains the
confidence bounds for parameter B.

The optional input argument, alpha, controls the width of the confidence
interval. By default, alpha is 0.05 which corresponds to 95% confidence
intervals.

Example This example generates 100 beta distributed observations. The “true”
parameters are 4 and 3 respectively. Compare these to the values in p. Note
that the columns of ci both bracket the true parameters.

r = betarnd(4,3,100,1);
[p,ci] = betafit(r,0.01)

p =

 3.9010 2.6193

ci =

 2.5244 1.7488
 5.2777 3.4899

Reference Hahn, Gerald J., & Shapiro, Samuel, S."Statistical Models in Engineering",
Wiley Classics Library John Wiley & Sons, New York. 1994. p. 95.

See Also betalike, mle
2-25

betainv
2betainvPurpose Inverse of the beta cumulative distribution function.

Syntax X = betainv(P,A,B)

Description betainv(P,A,B) computes the inverse of the beta cdf with parameters A and B
for the probabilities in P. The arguments P, A, and B must all be the same size
except that scalar arguments function as constant matrices of the common size
of the other arguments.

The parameters A and B must both be positive and P must lie on the interval
[0 1].

The beta inverse function in terms of the beta cdf is:

where

The result, x, is the solution of the integral equation of the beta cdf with
parameters a and b where you supply the desired probability p.

Algorithm We use Newton’s Method with modifications to constrain steps to the allowable
range for x, i.e., [0 1].

Examples p = [0.01 0.5 0.99];
x = betainv(p,10,5)

x =

 0.3726 0.6742 0.8981

x F 1–
= p a b,() x:F x a b,() p={ }=

p F x a b,()
1

B a b,()------------------- ta 1–

0

x

∫ 1 t–()b 1– dt= =
2-26

betalike
2betalikePurpose Negative beta log-likelihood function.

Syntax logL = betalike(params,data)

[logL,info] = betalike(params,data)

Description logL = betalike(params,data) returns the negative of the beta log-likelihood
function for the two beta parameters, params, given the column vector, data.
The length of logL is the length of data.

[logL,info] = betalike(params,data) also returns Fisher’s information
matrix, info. The diagonal elements of info are the asymptotic variances of
their respective parameters.

betalike is a utility function for maximum likelihood estimation of the beta
distribution. The likelihood assumes that all the elements in the data sample
are mutually independent. Since betalike returns the negative gamma
log-likelihood function, minimizing betalike using fmins is the same as
maximizing the likelihood.

Example This continues the example for betafit where we calculated estimates of the
beta parameters for some randomly generated beta distributed data.

r = betarnd(4,3,100,1);
[logl,info] = betalike([3.9010 2.6193],r)

logl =

 –33.0514

info =

 0.2856 0.1528
 0.1528 0.1142

See Also betafit, fmins, gamlike, mle, weiblike
2-27

betapdf
2betapdfPurpose Beta probability density function (pdf).

Syntax Y = betapdf(X,A,B)

Description betapdf(X,A,B) computes the beta pdf with parameters A and B at the values
in X. The arguments X, A, and B must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

The parameters A and B must both be positive and X must lie on the interval
[0 1].

The probability density function for the beta distribution is:

A likelihood function is the pdf viewed as a function of the parameters.
Maximum likelihood estimators (MLEs) are the values of the parameters that
maximize the likelihood function for a fixed value of x.

The uniform distribution on [0 1] is a degenerate case of the beta where
a = 1 and b = 1.

Examples a = [0.5 1; 2 4]

a =

 0.5000 1.0000
 2.0000 4.0000

y = betapdf(0.5,a,a)

y =
 0.6366 1.0000
 1.5000 2.1875

y f x a b,()
1

B a b,()-------------------xa 1– 1 x–()b 1– I 0 1,() x()= =
2-28

betarnd
2betarndPurpose Random numbers from the beta distribution.

Syntax R = betarnd(A,B)
R = betarnd(A,B,m)
R = betarnd(A,B,m,n)

Description R = betarnd(A,B) generates beta random numbers with parameters A and B.
The size of R is the common size of A and B if both are matrices. If either
parameter is a scalar, the size of R is the size of the other.

R = betarnd(A,B,m) generates beta random numbers with parameters A and
B. m is a 1-by-2 vector that contains the row and column dimensions of r.

R = betarnd(A,B,m,n) generates an m by n matrix of beta random numbers
with parameters A and B.

Examples a = [1 1; 2 2];
b = [1 2; 1 2];
r = betarnd(a,b)

r =

 0.6987 0.6139
 0.9102 0.8067

r = betarnd(10,10,[1 5])

r =

 0.5974 0.4777 0.5538 0.5465 0.6327

r = betarnd(4,2,2,3)

r =

 0.3943 0.6101 0.5768
 0.5990 0.2760 0.5474
2-29

betastat
2betastatPurpose Mean and variance for the beta distribution.

Syntax [M,V] = betastat(A,B)

Description For the beta distribution:

• The mean is

• The variance is

Examples If the parameters are equal, the mean is 1/2.

a = 1:6;
[m,v] = betastat(a,a)

m =

 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

v =

 0.0833 0.0500 0.0357 0.0278 0.0227 0.0192

a
a b+

ab
a b 1+ +() a b+()2---
2-30

binocdf
2binocdfPurpose Binomial cumulative distribution function (cdf).

Syntax Y = binocdf(X,N,P)

Description binocdf(X,N,P) computes the binomial cdf with parameters N and P at the
values in X. The arguments X, N, and P must all be the same size except that
scalar arguments function as constant matrices of the common size of the other
arguments.

The parameter N must be a positive integer and P must lie on the interval [0 1].

The binomial cdf is:

The result, y, is the probability of observing up to x successes in n independent
trials of where the probability of success in any given trial is p.

Examples If a baseball team plays 162 games in a season and has a 50-50 chance of
winning any game, then the probability of that team winning more than 100
games in a season is:

1 – binocdf(100,162,0.5)

The result is 0.001 (i.e., 1 – 0.999). If a team wins 100 or more games in a
season, this result suggests that it is likely that the team’s true probability of
winning any game is greater than 0.5.

y F x n p,()
n
i 

 

i 0=

x

∑ piq 1 i–()I 0 1 … n, , ,() i()= =
2-31

binofit
2binofitPurpose Parameter estimates and confidence intervals for binomial data.

Syntax phat = binofit(x,n)

[phat,pci] = binofit(x,n)

[phat,pci] = binofit(x,n,alpha)

Description binofit(x,n) returns the estimate of the probability of success for the
binomial distribution given the data in the vector, x.

[phat,pci] = binofit(x,n) gives maximum likelihood estimate, phat, and
95% confidence intervals, pci.

[phat,pci] = binofit(x,n,alpha) gives 100(1–alpha) percent confidence
intervals. For example, alpha = 0.01 yields 99% confidence intervals.

Example First we generate one binomial sample of 100 elements with a probability of
success of 0.6. Then, we estimate this probability given the results from the
sample. The 95% confidence interval, pci, contains the true value, 0.6.

r = binornd(100,0.6);
[phat,pci] = binofit(r,100)

phat =

 0.5800

pci =

 0.4771 0.6780

Reference Johnson, N. L., S. Kotz, and A.W. Kemp, “Univariate Discrete Distributions,
Second Edition,” Wiley 1992. pp. 124–130.

See Also mle
2-32

binoinv
2binoinvPurpose Inverse of the binomial cumulative distribution function (cdf).

Syntax X = binoinv(Y,N,P)

Description binoinv(Y,N,P) returns the smallest integer X such that the binomial cdf
evaluated at X is equal to or exceeds Y. You can think of Y as the probability of
observing X successes in N independent trials where P is the probability of
success in each trial.

The parameter n must be a positive integer and both P and Y must lie on the
interval [0 1]. Each X is a positive integer less than or equal to N.

Examples If a baseball team has a 50-50 chance of winning any game, what is a
reasonable range of games this team might win over a season of 162 games? We
assume that a surprising result is one that occurs by chance once in a decade.

binoinv([0.05 0.95],162,0.5)

ans =

71 91

This result means that in 90% of baseball seasons, a .500 team should win
between 71 and 91 games.
2-33

binopdf
2binopdfPurpose Binomial probability density function (pdf).

Syntax Y = binopdf(X,N,P)

Description binopdf(X,N,P) computes the binomial pdf with parameters N and P at the
values in X. The arguments X, N and P must all be the same size except that
scalar arguments function as constant matrices of the common size of the other
arguments.

N must be a positive integer and P must lie on the interval [0 1].

The binomial pdf is

The result, y, is the probability of observing x successes in n independent
trials of where the probability of success in any given trial is p.

Examples A Quality Assurance inspector tests 200 circuit boards a day. If 2% of the
boards have defects, what is the probability that the inspector will find no
defective boards on any given day?

binopdf(0,200,0.02)
ans =

 0.0176

What is the most likely number of defective boards the inspector will find?

y = binopdf([0:200],200,0.02);
[x,i] = max(y);
i

i =

 5

y f x n p,() n
x 

  pxq 1 x–()I 0 1 … n, , ,() x()= =
2-34

binornd
2binorndPurpose Random numbers from the binomial distribution.

Syntax R = binornd(N,P)

R = binornd(N,P,mm)

R = binornd(N,P,mm,nn)

Description R = binornd(N,P) generates binomial random numbers with parameters N and
P. The size of R is the common size of N and P if both are matrices . If either
parameter is a scalar, the size of R is the size of the other.

R = binornd(N,P,mm) generates binomial random numbers with parameters N
and P. mm is a 1-by-2 vector that contains the row and column dimensions of R.

R = binornd(N,p,mm,nn) generates binomial random numbers with
parameters N and P. The scalars mm and nn are the row and column dimensions
of R.

Algorithm The binornd function uses the direct method using the definition of the
binomial distribution as a sum of Bernoulli random variables.

Examples n = 10:10:60;
r1 = binornd(n,1./n)

r1 =

 2 1 0 1 1 2

r2 = binornd(n,1./n,[1 6])

r2 =

 0 1 2 1 3 1

r3 = binornd(n,1./n,1,6)

r3 =

 0 1 1 1 0 3
2-35

binostat
2binostatPurpose Mean and variance for the binomial distribution.

Syntax [M,V] = binostat(N,P)

Description For the binomial distribution:

• The mean is np.

• The variance is npq.

Examples n = logspace(1,5,5)

n =

 10 100 1000 10000 100000

[m,v] = binostat(n,1./n)

m =

 1 1 1 1 1

v =

 0.9000 0.9900 0.9990 0.9999 1.0000

[m,v] = binostat(n,1/2)

m =

 5 50 500 5000 50000

v =

 1.0e+04 *

 0.0003 0.0025 0.0250 0.2500 2.5000
2-36

bootstrp
2bootstrpPurpose Bootstrap statistics through resampling of data.

Syntax bootstat = bootstrp(nboot,'bootfun',d1,...)

[bootstat,bootsam] = bootstrp(...)

Description bootstrp(nboot,'bootfun',d1,...) draws nboot bootstrap data samples
and analyzes them using the function bootfun. nboot must be a positive
integer. bootstrp passes the data d1, d2, etc., to bootfun.

[bootstat,bootsam] = bootstrap(...) returns the bootstrap statistics in
bootstat. Each row of bootstat contains the results of applying 'bootfun' to
one bootstrap sample. If 'bootfun' returns a matrix, then this output is
converted to a long vector for storage in bootstat. bootsam is a matrix of
indices into the rows of the data matrix.

Example Correlate the LSAT scores and and law-school GPA for 15 students. These 15
data points are resampled to create 1000 different datasets, and the correlation
between the two variables is computed for each dataset.

load lawdata
[bootstat,bootsam] = bootstrp(1000,'corrcoef',lsat,gpa);
bootstat(1:5,:)

ans =

 1.0000 0.3021 0.3021 1.0000
 1.0000 0.6869 0.6869 1.0000
 1.0000 0.8346 0.8346 1.0000
 1.0000 0.8711 0.8711 1.0000
 1.0000 0.8043 0.8043 1.0000
2-37

bootstrp
bootsam(:,1:5)

ans =

 4 7 5 12 8
 1 11 10 8 4
 11 9 12 4 2
 11 14 15 5 15
 15 13 6 6 2
 6 8 4 3 8
 8 2 15 8 6
 13 10 11 14 5
 1 7 12 14 14
 1 11 10 1 8
 8 14 2 14 7
 11 12 10 8 15
 1 4 14 8 1
 6 1 5 5 12
 2 12 7 15 12

hist(bootstat(:,2))

The histogram shows the variation of the correlation coefficient across all the
bootstrap samples. The sample minimum is positive indicating that the
relationship between LSAT and GPA is not accidental.

0.2 0.4 0.6 0.8 1
0

50

100

150

200

250
2-38

boxplot
2boxplotPurpose Box plots of a data sample.

Syntax boxplot(X)

boxplot(X,notch)

boxplot(X,notch,'sym')

boxplot(X,notch,'sym',vert)

boxplot(X,notch,'sym',vert,whis)

Description boxplot(X) produces a box and whisker plot for each column of X. The box has
lines at the lower quartile, median, and upper quartile values. The whiskers
are lines extending from each end of the box to show the extent of the rest of
the data. Outliers are data with values beyond the ends of the whiskers. If
there is no data outside the whisker, there is a dot at the bottom whisker. The
dot color is the same as the whisker color.

boxplot(X,notch) with notch = 1 produces a notched-box plot. Notches graph
a robust estimate of the uncertainty about the means for box to box
comparison. The default, notch = 0 produces a rectangular box plot.

boxplot(X,notch,'sym') where 'sym' is a plotting symbol allows control of
the symbol for outliers if any (default = '+').

boxplot(X,notch,'sym',vert) with vert = 0 makes the boxes horizontal
(default: vert = 1, for vertical)

boxplot(X,notch,'sym',vert,whis) enables you to specify the length of the
“whiskers”. whis defines the length of the whiskers as a function of the
inter-quartile range (default = 1.5 * IQR.) If whis = 0, then boxplot displays all
data values outside the box using the plotting symbol, 'sym'.
2-39

boxplot
Examples x1 = normrnd(5,1,100,1);
x2 = normrnd(6,1,100,1);
x = [x1 x2];
boxplot(x,1)

The difference between the means of the two columns of x is 1. We can detect
this difference graphically since the notches do not overlap.

1 2

3

4

5

6

7

8

V
al

ue
s

Column Number
2-40

capable
2capablePurpose Process capability indices.

Syntax p = capable(data,lower,upper)

[p,Cp,Cpk] = capable(data,lower,upper)

Description capable(data,lower,upper) computes the probability that a sample, data,
from some process falls outside the bounds specified in lower and upper.

The assumptions are that the measured values in the vector, data, are
normally distributed with constant mean and variance and the the
measurements are statistically independent.

[p,Cp,Cpk] = capable(data,lower,upper) also returns the capability indices
Cp and Cpk.

Cp is the ratio of the range of the specifications to six times the estimate of the
process standard deviation

For a process that has its average value on target, a Cp of one translates to a
little more than one defect per thousand. Recently many industries have set a
quality goal of one part per million. This would correspond to a Cp = 1.6. The
higher the value of Cp the more capable the process.

Cpk is the ratio of difference between the process mean and the closer
specification limit to three times the estimate of the process standard deviation

where the process mean is µ. For processes that do not maintain their average
on target, Cpk is a more descriptive index of process capability.

Example Imagine a machined part with specifications requiring a dimension to be
within three thousandths of an inch of nominal. Suppose that the machining
process cuts too thick by one thousandth of an inch on average and also has a

Cp
USL LSL–

6σ--------------------------------=

Cpk min
USL µ–

3σ-----------------------
µ LSL–

3σ----------------------, 
 =
2-41

capable
standard deviation of one thousandth of an inch. What are the capability
indices of this process?

data = normrnd(1,1,30,1);
[p,Cp,Cpk] = capable(data,[–3 3]);
indices = [p Cp Cpk]

indices =

 0.0172 1.1144 0.7053

We expect 17 parts out of a thousand to be out-of-specification. Cpk is less than
Cp because the process is not centered.

Reference Montgomery, D., “Introduction to Statistical Quality Control,” John Wiley &
Sons 1991. pp. 369–374.

See Also capaplot, histfit
2-42

capaplot
2capaplotPurpose Process capability plot.

Syntax p = capaplot(data,specs)

[p,h] = capaplot(data,specs)

Description capaplot(data,specs) fits the observations in the vector data assuming a
normal distribution with unknown mean and variance and plots the
distribution of a new observation (T distribution.) The part of the distribution
between the lower and upper bounds contained in the two element vector,
specs, is shaded in the plot.

[p,h] = capaplot(data,specs) returns the probability of the new observation
being within specification in p and handles to the plot elements in h.

Example Imagine a machined part with specifications requiring a dimension to be
within 3 thousandths of an inch of nominal. Suppose that the machining
process cuts too thick by one thousandth of an inch on average and also has a
standard deviation of one thousandth of an inch.

data = normrnd(1,1,30,1);
p = capaplot(data,[–3 3])
p =

 0.9784

The probability of a new observation being within specs is 97.84%.

See Also capable, histfit

-3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4
Probability Between Limits is 0.9784
2-43

caseread
2casereadPurpose Read casenames from a file.

Syntax names = caseread(filename)

names = caseread

Description names = caseread(filename) reads the contents of filename and returns a
string matrix of names. filename is the name of a file in the current directory,
or the complete pathname of any file elsewhere. caseread treats each line as a
separate case.

names = caseread displays the File Open dialog box for interactive selection
of the input file.

Example Use the file months.dat created using the function casewrite on the next page.

type months.dat

January
February
March
April
May

names = caseread('months.dat')

names =

January
February
March
April
May

See Also tblread, gname, casewrite
2-44

casewrite
2casewritePurpose Write casenames from a string matrix to a file.

Syntax casewrite(strmat,filename)

casewrite(strmat)

Description casewrite (strmat,filename) writes the contents of strmat to filename.
Each row of strmat represents one casename. filename is the name of a file in
the current directory, or the complete pathname of any file elsewhere.
casewrite writes each name to a separate line in filename.

casewrite(strmat) displays the File Open dialog box for interactive
specification of the output file.

Example strmat = str2mat('January','February','March','April','May')

strmat =

January
February
March
April
May

casewrite(strmat,'months.dat')
type months.dat

January
February
March
April
May

See Also gname, caseread, tblwrite
2-45

cdf
2cdfPurpose Computes a chosen cumulative distribution function (cdf).

Syntax P = cdf('name',X,A1,A2,A3)

Description cdf is a utility routine allowing you to access all the cdfs in the Statistics
Toolbox using the name of the distribution as a parameter.

P = cdf('name',X,A1,A2,A3) returns a matrix of probabilities. name is a string
containing the name of the distribution. X is a matrix of values, and A, A2, and
A3 are matrices of distribution parameters. Depending on the distribution,
some of the parameters may not be necessary.

The arguments X, A1, A2, and A3 must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

Examples p = cdf('Normal',–2:2,0,1)

p =

 0.0228 0.1587 0.5000 0.8413 0.9772

p = cdf('Poisson',0:5,1:6)

p =

 0.3679 0.4060 0.4232 0.4335 0.4405 0.4457

See Also icdf, mle, pdf, random
2-46

chi2cdf
2chi2cdfPurpose Chi-square (χ2) cumulative distribution function (cdf).

Syntax P = chi2cdf(X,V)

Description chi2cdf(X,V) computes the χ2 cdf with parameter V at the values in X. The
arguments X and V must be the same size except that a scalar argument
functions as a constant matrix of the same size as the other argument.

The degrees of freedom,V, must be a positive integer.

The χ2 cdf is:

The result, p, is the probability that a single observation from the χ2

distribution with degrees of freedom, ν, will fall in the interval [0 x].

The χ2 density function with n degrees of freedom is the same as the gamma
density function with parameters n/2 and 2.

Examples probability = chi2cdf(5,1:5)

probability =

 0.9747 0.9179 0.8282 0.7127 0.5841

probability = chi2cdf(1:5,1:5)

probability =

 0.6827 0.6321 0.6084 0.5940 0.5841

p F x ν() t ν 2–() 2⁄ e t– 2⁄

2

v
2--- Γ ν 2⁄()

0

x

∫ dt= =
2-47

chi2inv
2chi2invPurpose Inverse of the chi-square (χ2) cumulative distribution function (cdf).

Syntax X = chi2inv(P,V)

Description chi2inv(P,V) computes the inverse of the χ2 cdf with parameter V for the
probabilities in P. The arguments P and V must be the same size except that a
scalar argument functions as a constant matrix of the size of the other
argument.

The degrees of freedom,V, must be a positive integer and P must lie in the
interval [0 1].

We define the χ2 inverse function in terms of the χ2 cdf.

The result, x, is the solution of the integral equation of the χ2 cdf with
parameter ν where you supply the desired probability p.

Examples Find a value that exceeds 95% of the samples from a χ2 distribution with 10
degrees of freedom.

x = chi2inv(0.95,10)

x =

 18.3070

You would observe values greater than 18.3 only 5% of the time by chance.

x F 1– p ν() x:F x ν() p={ }= =

where p F x ν() t ν 2–() 2⁄ e t– 2⁄

2

v
2--- Γ ν 2⁄()

0

x

∫ dt= =
2-48

chi2pdf
2chi2pdfPurpose Chi-square (χ2) probability density function (pdf).

Syntax Y = chi2pdf(X,V)

Description chi2pdf(X,V) computes the χ2 pdf with parameter V at the values in X. The
arguments X and V must be the same size except that a scalar argument
functions as a constant matrix of the same size of the other argument.

The degrees of freedom, V, must be a positive integer.

The chi-square pdf is:

The χ2 density function with n degrees of freedom is the same as the gamma
density function with parameters n/2 and 2.

If x is standard normal , then x2 is distributed χ2 with one degree of freedom.
If x1, x2, ..., xn are n independent standard normal observations, then the sum
of the squares of the x’s is distributed χ2 with n degrees of freedom.

Examples nu = 1:6;
x = nu;
y = chi2pdf(x,nu)

y =

 0.2420 0.1839 0.1542 0.1353 0.1220 0.1120

The mean of the χ2 distribution is the value of the parameter, nu. The above
example shows that the probability density of the mean falls as nu increases.

y f x ν() x ν 2–() 2⁄ e x– 2⁄

2

v
2--- Γ ν 2⁄()

-------------------------------------= =
2-49

chi2rnd
2chi2rndPurpose Random numbers from the chi-square (χ2) distribution.

Syntax R = chi2rnd(V)

R = chi2rnd(V,m)

R = chi2rnd(V,m,n)

Description R = chi2rnd(V) generates χ2 random numbers with V degrees of freedom. The
size of R is the size of V.

R = chi2rnd(V,m) generates χ2 random numbers with V degrees of freedom. m
is a 1-by-2 vector that contains the row and column dimensions of R.

R = chi2rnd(V,m,n) generates χ2 random numbers with V degrees of freedom.
The scalars m and n are the row and column dimensions of R.

Examples Note that the first and third commands are the same but are different from the
second command.

r = chi2rnd(1:6)

r =

0.0037 3.0377 7.8142 0.9021 3.2019 9.0729

r = chi2rnd(6,[1 6])

r =

6.5249 2.6226 12.2497 3.0388 6.3133 5.0388

r = chi2rnd(1:6,1,6)

r =

 0.7638 6.0955 0.8273 3.2506 1.5469 10.9197
2-50

chi2stat
2chi2statPurpose Mean and variance for the chi-square (χ2) distribution.

Syntax [M,V] = chi2stat(NU)

Description For the χ2 distribution:

• The mean is n

• The variance is 2n.

Example nu = 1:10;
nu = nu'∗nu;
[m,v] = chi2stat(nu)

m =

 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 4 8 12 16 20 24 28 32 36 40
 5 10 15 20 25 30 35 40 45 50
 6 12 18 24 30 36 42 48 54 60
 7 14 21 28 35 42 49 56 63 70
 8 16 24 32 40 48 56 64 72 80
 9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

v =

 2 4 6 8 10 12 14 16 18 20
 4 8 12 16 20 24 28 32 36 40
 6 12 18 24 30 36 42 48 54 60
 8 16 24 32 40 48 56 64 72 80
10 20 30 40 50 60 70 80 90 100
12 24 36 48 60 72 84 96 108 120
14 28 42 56 70 84 98 112 126 140
16 32 48 64 80 96 112 128 144 160
18 36 54 72 90 108 126 144 162 180
20 40 60 80 100 120 140 160 180 200
2-51

classify
2classifyPurpose Linear discriminant analysis.

Syntax class = classify(sample,training,group)

Description class = classify(sample,training,group) assigns each row of the data in
sample into one of the groups that the training set, training, is already
divided into. sample and training must have the same number of columns.

The vector group contains integers, from one to the number of groups, that
identify which group each row of the training set belongs. group and training
must have the same number of rows.

The function returns class, a vector with the same number of rows as sample.
Each element of class identifies the group to which the corresponding element
of sample has been assigned. The classify function determines into which
group each row in sample belongs by computing the Mahalanobis distance of
each row in sample to each row in training.

Example load discrim
sample = ratings(idx,:);
training = ratings(1:200,:);
g = group(1:200);
class = classify(sample,training,g);
first5 = class(1:5)

first5 =

 2
 2
 2
 2
 2

See Also mahal
2-52

cluster
2clusterPurpose Construct clusters from linkage output.

Syntax T = cluster(Z,cutoff)
T = cluster(Z,cutoff,depth)

Description cluster(Z,cutoff) constructs clusters from hierarchical cluster tree, Z,
generated by the linkage function. Z is a matrix of size m-1 by 3, where m is
the number of observations in the original data.

cutoff is a threshold value that determines how the cluster function creates
clusters. The value of cutoff determines how cluster interprets it.

cluster(Z,cutoff,depth)constructs clusters from cluster tree Z. The depth
argument specifies the number of levels in the hierarchical cluster tree to
include in the inconsistency coefficient computation. (The inconsistency
coefficient compares a link between two objects in the cluster tree with
neighboring links up to a specified depth. See the inconsistent function for
more information.) When the depth argument is specified, cutoff is always
interpreted as the inconsistency coefficient threshold.

The output, T, is a vector of size m that identifies, by number, the cluster in
which each object was grouped. To find out which object from the original
dataset are contained in cluster i, use find(T==i).

Value Meaning

0 < cutoff < 1 cutoff is interpreted as the threshold for the
inconsistency coefficient. The inconsistency
coefficient quantifies the degree of difference between
objects in the hierarchical cluster tree. If
inconsistency coefficient of a link is greater than the
threshold, the cluster function uses the link as a
boundary for a cluster grouping. For more information
about the inconsistency coefficient, see the
inconsistent function.

cutoff >= 1 cutoff is interpreted as the maximum number of
clusters to keep in the hierarchical tree.
2-53

cluster
Example The example uses the pdist function to calculate the distance between items
in a matrix of random numbers and then uses the linkage function to compute
the hierarchical cluster tree based on the matrix. The output of the linkage
function is passed to the cluster function. The cutoff value 3 indicates that
you want to group the items into three clusters. The example uses the find
function to list all the items grouped into cluster 2.

rand('seed', 0);
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y);
T = cluster(Z,3);
find(T == 3)

ans =

11
12
13
14
15
16
17
18
19
20

See Also clusterdata, cophenet, dendrogram, inconsistent, linkage, pdist,
squareform
2-54

clusterdata
2clusterdataPurpose Construct clusters from data.

Syntax T = clusterdata(X,cutoff)

Description T = clusterdata(X,cutoff)constructs clusters from the data matrix X. X is a
matrix of size m by n, interpreted as m observations of n variables.

cutoff is a threshold value that determines how the cluster function creates
clusters. The value of cutoff determines how clusterdata interprets it.

The output, T, is a vector of size m that identifies, by number, the cluster in
which each object was grouped.

T = clusterdata(X,cutoff) is the same as

Y = pdist(X,'euclid');
Z = linkage(Y,'single');
T = cluster(Z,cutoff);

Follow this sequence to use nondefault parameters for pdist and linkage.

Example The example first creates a sample dataset of random numbers. The example
then uses the clusterdata function to compute the distances between items in
the dataset and create a hierarchical cluster tree from the dataset. Finally, the

Value Meaning

0 < cutoff < 1 cutoff is interpreted as the threshold for the
inconsistency coefficient. The inconsistency
coefficient quantifies the degree of difference between
objects in the hierarchical cluster tree. If
inconsistency coefficient of a link is greater than the
threshold, the cluster function uses the link as a
boundary for a cluster grouping. For more information
about the inconsistency coefficient, see the
inconsistent function.

cutoff >= 1 cutoff is interpreted as the maximum number of
clusters to keep in the hierarchical tree.
2-55

clusterdata
clusterdata function groups the items in the dataset into three clusters. The
example uses the find function to list all the items in cluster 2.

rand('seed', 12);
X = [rand(10,3); rand(10,3)+1.2; rand(10,3)+2.5;
T = clusterdata(X,3);
find(T == 2)

ans =

 21
 22
 23
 24
 25
 26
 27
 28
 29
 30

See Also cluster, cophenet, dendrogram, inconsistent, linkage, pdist, squareform
2-56

combnk
2combnkPurpose Enumeration of all combinations of n objects k at a time.

Syntax C = combnk(v,k)

Description C = combnk(v,k) returns all combinations of the n elements in v taken k at a
time.

C = combnk(v,k) produces a matrix, with k columns. Each row of C has k of the
elements in the vector v. C has n!/k!(n-k)! rows.

It is not feasible to use this function if v has more than about 10 elements.

Example Combinations of characters from a string.

C = combnk('tendril',4);
last5 = C(31:35,:)

last5 =

tedr
tenl
teni
tenr
tend

Combinations of elements from a numeric vector.

c = combnk(1:4,2)

c =

 3 4
 2 4
 2 3
 1 4
 1 3
 1 2
2-57

cophenet
2cophenetPurpose Cophenetic correlation coefficient.

Syntax c = cophenet(Z,Y)

Description c = cophenet(Z,Y) computes the cophenetic correlation coefficient which
compares the distance information in Z, generated by linkage, and the
distance information in Y, generated by pdist. Z is a matrix of size m-1 by 3,
with distance information in the third column. Y is a vector of size

.

For example, given a group of objects {1,2,....m} with distances Y, the function
linkage produces a hierarchical cluster tree. The cophenet function measures
the distortion of this classification, indicating how readily the data fits into the
structure suggested by the classification.

The output value, c, is the cophenetic correlation coefficient. The magnitude of
this value should be very close to 1 for a high-quality solution. This measure
can be used to compare alternative cluster solutions obtained using different
algorithms.

The cophenetic correlation between Z(:,3) and Y is defined as

where:

• Yij is the distance between objects i and j in Y.

• Zij is the distance between objects i and j in Z(:,3).

• y and z are the average of Y and Z(:,3), respectively.

Example rand('seed',12);
X = [rand(10,3);rand(10,3)+1;rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y,'centroid');
c = cophenet(Z,Y)
c =
 0.6985

See Also cluster, dendrogram, inconsistent, linkage, pdist, squareform

m m 1–() 2⁄⋅

c
Σi j< Yij y–() Zij z–()

Σi j< Yij y–()2Σi j< Zij z–()2
--=
2-58

cordexch
2cordexchPurpose D-optimal design of experiments – coordinate exchange algorithm.

Syntax settings = cordexch(nfactors,nruns)

[settings,X] = cordexch(nfactors,nruns)

[settings,X] = cordexch(nfactors,nruns,'model')

Description settings = cordexch(nfactors,nruns) generates the factor settings matrix,
settings, for a D-optimal design using a linear additive model with a constant
term. settings has nruns rows and nfactors columns.

[settings,X] = cordexch(nfactors,nruns) also generates the associated
design matrix, X.

[settings,X] = cordexch(nfactors,nruns,'model') produces a design for
fitting a specified regression model. The input, 'model', can be one of these
strings:

• 'interaction' – includes constant, linear, and cross product terms.

• 'quadratic' – interactions plus squared terms.

• 'purequadratic' – includes constant, linear and squared terms.

Example The D-optimal design for two factors in nine run using a quadratic model is the
32 factorial as shown below:

settings = cordexch(2,9,'quadratic')

settings =

 –1 1
 1 1
 0 1
 1 –1
 –1 –1
 0 –1
 1 0
 0 0
 –1 0

See Also rowexch, daugment, dcovary, hadamard, fullfact, ff2n
2-59

corrcoef
2corrcoefPurpose Correlation coefficients.

Syntax R = corrcoef(X)

Description R = corrcoef(X) returns a matrix of correlation coefficients calculated from
an input matrix whose rows are observations and whose columns are variables.
The element (i,j) of the matrix R is related to the corresponding element of
the covariance matrix C = cov(X) by

See Also cov, mean, std, var

corrcoef is a function in MATLAB.

rR i j,() C i j),()
C i i,()C j j,()

-------------------------------------=
2-60

cov
2covPurpose Covariance matrix.

Syntax C = cov(X)

C = cov(x,y)

Description cov computes the covariance matrix. For a single vector, cov(x) returns a
scalar containing the variance. For matrices, where each row is an observation,
and each column a variable, cov(X) is the covariance matrix.

The variance function, var(X) is the same as diag(cov(X)).

The standard deviation function, std(X) is equivalent to
sqrt(diag(cov(X))).

cov(x,y), where x and y are column vectors of equal length, gives the same
result as cov([x y]).

Algorithm The algorithm for cov is

[n,p] = size(X);
X = X – ones(n,1) * mean(X);
Y = X'∗X/(n–1);

See Also corrcoef, mean, std, var
xcov, xcorr in the Signal Processing Toolbox

cov is a function in MATLAB.
2-61

crosstab
2crosstabPurpose Cross-tabulation of two vectors.

Syntax table = crosstab(col1,col2)
[table,chi2,p] = crosstab(col1,col2)

Description table = crosstab(col1,col2) takes two vectors of positive integers and
returns a matrix, table, of cross-tabulations. The ijth element of table
contains the count of all instances where col1 = i and col2 = j.

[table,chi2,p] = crosstab(col1,col2) also returns the chisquare statistic,
chi2, for testing the independence of the rows and columns table. The scalar,
p, is the significance level of the test. Values of p near zero cast doubt on the
assumption of independence of the rows and columns of table.

Example We generate 2 columns of 50 discrete uniform random numbers. The first
column has numbers from one to three. The second has only ones and twos. The
two columns are independent so we would be surprised if p were near zero.

r1 = unidrnd(3,50,1);r2 = unidrnd(2,50,1);
[table,chi2,p] = crosstab(r1,r2)

table =

 10 5
 8 8
 6 13

chi2 =

 4.1723

p =

 0.1242

The result, 0.1242, is not a surprise. A very small value of p would make us
suspect the “randomness” of the random number generator.

See Also tabulate
2-62

daugment
2daugmentPurpose D-optimal augmentation of an experimental design.

Syntax settings = daugment(startdes,nruns)

[settings,X] = daugment(startdes,nruns,'model')

Description settings = daugment(startdes,nruns) augments an initial experimental
design, startdes, with nruns new tests.

[settings,X] = daugment(startdes,nruns,'model') also supplies the
design matrix, X. The input, 'model', controls the order of the regression
model. By default, daugment assumes a linear additive model. Alternatively,
'model' can be any of these:

• 'interaction' – includes constant, linear, and cross product terms.

• 'quadratic' – interactions plus squared terms.

• 'purequadratic' – includes constant, linear and squared terms.

daugment uses the coordinate exchange algorithm.

Example We add 5 runs to a 22 factorial design to allow us to fit a quadratic model.

startdes = [–1 –1; 1 –1; –1 1; 1 1];
settings = daugment(startdes,5,'quadratic')

settings =

 –1 –1
 1 –1
 –1 1
 1 1
 1 0
 –1 0
 0 1
 0 0
 0 –1

The result is a 32 factorial design.

See Also cordexch, dcovary, rowexch
2-63

dcovary
2dcovaryPurpose D-optimal design with specified fixed covariates.

Syntax settings = dcovary(factors,covariates)

[settings,X] = dcovary(factors,covariates,'model')

Description settings = dcovary(factors,covariates,'model') creates a D-optimal
design subject to the constraint of fixed covariates for each run. factors is
the number of experimental variables you want to control.

[settings,X] = dcovary(factors,covariates,'model') also creates the
associated design matrix, X. The input, 'model', controls the order of the
regression model. By default, dcovary assumes a linear additive model.
Alternatively, 'model' can be any of these:

• 'interaction' – includes constant, linear, and cross product terms.

• 'quadratic' – interactions plus squared terms.

• 'purequadratic' – includes constant, linear and squared terms.

Example Suppose we want to block an eight run experiment into 4 blocks of size 2 to fit
a linear model on two factors.

covariates = dummyvar([1 1 2 2 3 3 4 4]);
settings = dcovary(2,covariates(:,1:3),'linear')
settings =

 1 1 1 0 0
 –1 –1 1 0 0
 –1 1 0 1 0
 1 –1 0 1 0
 1 1 0 0 1
 –1 –1 0 0 1
 –1 1 0 0 0
 1 –1 0 0 0

The first two columns of the output matrix contain the settings for the two
factors. The last three columns are dummy variable codings for the four blocks.

See Also daugment, cordexch
2-64

dendrogram
2dendrogramPurpose Plot dendrogram graphs.

Syntax H = dendrogram(Z)
H = dendrogram(Z,p)
[H,T] = dendrogram(...)

Description H = dendrogram(Z) generates a dendrogram plot of the hierarchical, binary
cluster tree, Z. Z is an m-1 by 3 matrix, generated by the linkage function,
where m is the number of objects in the original dataset.

A dendrogram consists of many upside-down, U-shaped lines connecting
objects in a hierarchical tree. Except for the Ward linkage (see linkage), the
height of each U represents the distance between the two objects being
connected. The output, H, is a vector of line handles.

H = dendrogram(Z,p) generates a dendrogram with only the top p nodes. By
default, dendrogram uses 30 as the value of p. When there are more than 30
initial nodes, a dendrogram may look crowded. To display every node, set p = 0.

[H,T] = dendrogram(...) generates a dendrogram, returning T, a vector of
size m that contains the cluster number for each object in the original dataset.
T provides access to the nodes of a cluster hierarchy that are not displayed in
the dendrogram because they fall below the cutoff value p. For example, to find
out which objects are contained in leaf node k of the dendrogram, use
find(T==k). Leaf nodes are the nodes at the bottom of the dendrogram that
have no other nodes below them.

When there are fewer than p objects in the original data, all objects are
displayed in the dendrogram. In this case, T is the identical map, i.e.,
T = (1:m)', where each node contains only itself.
2-65

dendrogram
Example rand('seed',12);
X= rand(100,2);
Y= pdist(X,'citiblock');
Z= linkage(Y,'average');
[H, T] = dendrogram(Z);

find(T==20)

ans =

20
49
62
65
73
96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

14 17 13 22 12 8 23 20 19 1 21 15 5 2 3 16 27 4 18 24 28 6 10 7 30 26 9 25 11 29
2-66

dendrogram
This output indicates that leaf node 20 in the dendrogram contains the original
data points 20, 49, 62, 65, 73, and 96.

See Also cluster, clusterdata, cophenet, inconsistent, linkage, pdist, squareform
2-67

disttool
2disttoolPurpose Interactive graph of cdf (or pdf) for many probability distributions.

Syntax disttool

Description The disttool command sets up a graphic user interface for exploring the
effects of changing parameters on the plot of a cdf or pdf. Clicking and dragging
a vertical line on the plot allows you to evaluate the function over its entire
domain interactively.

Evaluate the plotted function by typing a value in the x-axis edit box or
dragging the vertical reference line on the plot. For cdfs, you can evaluate the
inverse function by typing a value in the y-axis edit box or dragging the
horizontal reference line on the plot. The shape of the pointer changes from an
arrow to a crosshair when you are over the vertical or horizontal line to indicate
that the reference line is draggable.

To change the distribution function choose from the pop-up menu of functions
at the top left of the figure. To change from cdfs to pdfs, choose from the pop-up
menu at the top right of the figure.

To change the parameter settings move the sliders or type a value in the edit
box under the name of the parameter. To change the limits of a parameter, type
a value in the edit box at the top or bottom of the parameter slider.

When you are done, press the Close button.

See Also randtool
2-68

dummyvar
2dummyvarPurpose Matrix of 0-1 “dummy” variables.

Syntax D = dummyvar(group)

Description D = dummyvar(group) generates a matrix, D, of 0-1 columns. D has one column
for each unique value in each column of the matrix group. Each column of
group contains positive integers that indicate the group membership of an
individual row.

Example Suppose we are studying the effects of two machines and three operators on a
process. The first column of group would have the values one or two depending
on which machine was used. The second column of groupwould have the values
one, two, or three depending on which operator ran the machine.

group = [1 1;1 2;1 3;2 1;2 2;2 3];
D = dummyvar(group)

D =

 1 0 1 0 0
 1 0 0 1 0
 1 0 0 0 1
 0 1 1 0 0
 0 1 0 1 0
 0 1 0 0 1

See Also pinv, regress
2-69

errorbar
2errorbarPurpose Plot error bars along a curve.

Syntax errorbar(X,Y,L,U,symbol)

errorbar(X,Y,L)

errorbar(Y,L)

Description errorbar(X,Y,L,U,symbol) plots X versus Y with error bars specified by L and
U. X, Y, L, and U must be the same length. If X, Y, L, and U are matrices, then each
column produces a separate line. The error bars are each drawn a distance of
U(i) above and L(i) below the points in (X,Y). symbol is a string that controls
the line type, plotting symbol, and color of the error bars.

errorbar(X,Y,L) plots X versus Y with symmetric error bars about Y.

errorbar(Y,L) plots Y with error bars [Y–L Y+L].

Example lambda = (0.1:0.2:0.5);
r = poissrnd(lambda(ones(50,1),:));
[p,pci] = poissfit(r,0.001);
L = p – pci(1,:)
U = pci(2,:) – p
errorbar(1:3,p,L,U,'+')

L =
 0.1200 0.1600 0.2600

U =
 0.2000 0.2200 0.3400

See Also errorbar is a function in MATLAB.

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8
2-70

ewmaplot
2ewmaplotPurpose Exponentially Weighted Moving Average (EWMA) chart for Statistical Process
Control (SPC).

Syntax ewmaplot(data)

ewmaplot(data,lambda)

ewmaplot(data,lambda,alpha)

ewmaplot(data,lambda,alpha,specs)

h = ewmaplot(...)

Description ewmaplot(data) produces an EWMA chart of the grouped responses in data.
The rows of data contain replicate observations taken at a given time. The rows
should be in time order.

ewmaplot(data,lambda) produces an EWMA chart of the grouped responses in
data, and specifes how much the current prediction is influenced by past
observations. Higher values of lambda give more weight to past observations.
By default, lambda = 0.4; lambda must be between 0 and 1.

ewmaplot(data,lambda,alpha) produces an EWMA chart of the grouped
responses in data, and specifies the significance level of the upper and lower
plotted confidence limits. alpha is 0.01 by default. This means that roughly
99% of the plotted points should fall between the control limits.

ewmaplot(data,lambda,alpha,specs) produces an EWMA chart of the
grouped responses in data, and specifies a two element vector, specs, for the
lower and upper specification limits of the response. Note

h = ewmaplot(...) returns a vector of handles to the plotted lines.

Example Consider a process with a slowly drifting mean over time. An EWMA chart is
preferable to an x-bar chart for monitoring this kind of process. This simulation
demonstrates an EWMA chart for a slow linear drift.

t = (1:30)';
r = normrnd(10+0.02*t(:,ones(4,1)),0.5);
ewmaplot(r,0.4,0.01,[9.3 10.7])
2-71

ewmaplot
Reference Montgomery, D., Introduction to Statistical Quality Control, John Wiley &
Sons 1991. p. 299.

See Also xbarplot, schart

0 5 10 15 20 25 30
9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11
UCL

LCL

Exponentially Weighted Moving Average (EWMA) Chart

USL

LSL

Sample Number

E
W

M
A

2-72

expcdf
2expcdfPurpose Exponential cumulative distribution function (cdf).

Syntax P = expcdf(X,MU)

Description expcdf(X,MU) computes the exponential cdf with parameter settings MU at the
values in X. The arguments X and MU must be the same size except that a scalar
argument functions as a constant matrix of the same size of the other
argument.

The parameter MU must be positive.

The exponential cdf is:

The result, p, is the probability that a single observation from an exponential
distribution will fall in the interval [0 x].

Examples The median of the exponential distribution is µ∗log(2). Demonstrate this fact.

mu = 10:10:60;
p = expcdf(log(2)*mu,mu)

p =

 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

What is the probability that an exponential random variable will be less than
or equal to the mean, µ?

mu = 1:6;
x = mu;
p = expcdf(x,mu)

p =

 0.6321 0.6321 0.6321 0.6321 0.6321 0.6321

p F x µ()
1
µ---e

t
µ---–

0

x

∫ dt 1 e
x
µ---–

–= = =
2-73

expfit
2expfitPurpose Parameter estimates and confidence intervals for exponential data.

Syntax muhat = expfit(x)

[muhat,muci] = expfit(x)

[muhat,muci] = expfit(x,alpha)

Description muhat = expfit(x) returns the estimate of the parameter, µ, of the
exponential distribution given the data, x.

[muhat,muci] = expfit(x) also returns the 95% confidence interval in
muci.

[muhat,muci] = expfit(x,alpha) gives 100(1–alpha) percent confidence
intervals. For example, alpha = 0.01 yields 99% confidence intervals.

Example We generate 100 independent samples of exponential data with µ = 3. muhat is
an estimate of true_mu and muci is a 99% confidence interval around
muhat. Notice that muci contains true_mu.

true_mu = 3;
[muhat,muci] = expfit(r,0.01)

muhat =

 2.8835

muci =

 2.1949
 3.6803

See Also betafit, binofit, gamfit, normfit, poissfit, unifit, weibfit
2-74

expinv
2expinvPurpose Inverse of the exponential cumulative distribution function (cdf).

Syntax X = expinv(P,MU)

Description expinv(P,MU) computes the inverse of the exponential cdf with parameter MU
for the probabilities in P. The arguments P and MU must be the same size except
that a scalar argument functions as a constant matrix of the size of the other
argument.

The parameter MU must be positive and P must lie on the interval [0 1].

The inverse of the exponential cdf is:

The result, x, is the value such that the probability is p that an observation
from an exponential distribution with parameter µ will fall in the range [0 x].

Examples Let the lifetime of light bulbs be exponentially distributed with mu equal to 700
hours. What is the median lifetime of a bulb?

expinv(0.50,700)

ans =

 485.2030

So, suppose you buy a box of “700 hour” light bulbs. If 700 hours is mean life of
the bulbs, then half them will burn out in less than 500 hours.

x F p µ() µln 1 p–()–= =
2-75

exppdf
2exppdfPurpose Exponential probability density function (pdf).

Syntax Y = exppdf(X,MU)

Description exppdf(X,MU) computes the exponential pdf with parameter settings MU at the
values in X. The arguments X and MU must be the same size except that a scalar
argument functions as a constant matrix of the same size of the other
argument.

The parameter MU must be positive.

The exponential pdf is:

The exponential pdf is the gamma pdf with its first parameter (a) equal to 1.

The exponential distribution is appropriate for modeling waiting times when
you think the probability of waiting an additional period of time is independent
of how long you’ve already waited. For example, the probability that a light
bulb will burn out in its next minute of use is relatively independent of how
many minutes it has already burned.

Examples y = exppdf(5,1:5)

y =

 0.0067 0.0410 0.0630 0.0716 0.0736

y = exppdf(1:5,1:5)

y =

 0.3679 0.1839 0.1226 0.0920 0.0736

y f x µ()
1
µ---e

x
µ---–

= =
2-76

exprnd
2exprndPurpose Random numbers from the exponential distribution.

Syntax R = exprnd(MU)
R = exprnd(MU,m)
R = exprnd(MU,m,n)

Description R = exprnd(MU) generates exponential random numbers with mean MU. The
size of R is the size of MU.

R = exprnd(MU,m) generates exponential random numbers with mean MU. m is
a 1-by-2 vector that contains the row and column dimensions of R.

R = exprnd(MU,m,n) generates exponential random numbers with mean MU.
The scalars m and n are the row and column dimensions of R.

Examples n1 = exprnd(5:10)

n1 =

 7.5943 18.3400 2.7113 3.0936 0.6078 9.5841

n2 = exprnd(5:10,[1 6])

n2 =

 3.2752 1.1110 23.5530 23.4303 5.7190 3.9876

n3 = exprnd(5,2,3)

n3 =

 24.3339 13.5271 1.8788
 4.7932 4.3675 2.6468
2-77

expstat
2expstatPurpose Mean and variance for the exponential distribution.

Syntax [M,V] = expstat(MU)

Description For the exponential distribution:

• The mean is µ.

• The variance is µ2.

Examples [m,v] = expstat([1 10 100 1000])

m =

 1 10 100 1000

v =

 1 100 10000 1000000
2-78

fcdf
2fcdfPurpose F cumulative distribution function (cdf).

Syntax P = fcdf(X,V1,V2)

Description fcdf(X,V1,V2) computes the F cdf with parameters V1 and V2 at the values in
X. The arguments X, V1 and V2 must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

Parameters V1 and V2 must contain positive integers.

The F cdf is:

The result, p, is the probability that a single observation from an F distribution
with parameters ν1 and ν2 will fall in the interval [0 x].

Examples This example illustrates an important and useful mathematical identity for the
F distribution.

nu1 = 1:5;
nu2 = 6:10;
x = 2:6;
F1 = fcdf(x,nu1,nu2)

F1 =

 0.7930 0.8854 0.9481 0.9788 0.9919

F2 = 1 – fcdf(1./x,nu2,nu1)

F2 =

 0.7930 0.8854 0.9481 0.9788 0.9919

F x ν1 ν2,()
Γ

ν1 ν2+()
2-----------------------

Γ
ν1
2------ 

 Γ
ν2
2------ 

 

0

x

∫
ν1
ν2
------ 

 
ν1

2----- t
ν1 2–

2--------------

1
ν1
ν2
------ 

 t+

ν1 ν2+
2-----------------

--dt= =
2-79

ff2n
2ff2nPurpose Two-level full-factorial designs.

Syntax X = ff2n(n)

Description X = ff2n(n) creates a two-level full-factorial design, X. n is the number of
columns of X. The number of rows is 2n.

Example X = ff2n(3)

X =

 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

X is the binary representation of the numbers from 0 to 2n–1.

See Also fullfact
2-80

finv
2finvPurpose Inverse of the F cumulative distribution function (cdf).

Syntax X = finv(P,V1,V2)

Description finv(P,V1,V2) computes the inverse of the F cdf with numerator degrees of
freedom,V1, and denominator degrees of freedom, V2, for the probabilities in
P. The arguments P, V1 and V2 must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

The parameters V1 and V2 must both be positive integers and P must lie on the
interval [0 1].

The F inverse function is defined in terms of the F cdf:

Examples Find a value that should exceed 95% of the samples from an F distribution with
5 degrees of freedom in the numerator and 10 degrees of freedom in the
denominator.

x = finv(0.95,5,10)

x =

 3.3258

You would observe values greater than 3.3258 only 5% of the time by chance.

x F 1– p ν1 ν2,() x:F x ν1 ν2,() p={ }= =

where p F x ν1 ν2,()
Γ

ν1 ν2+()
2-----------------------

Γ
ν1
2------ 

 Γ
ν2
2------ 

 

0

x

∫
ν1
ν2
------ 

 
ν1

2----- t
ν1 2–

2--------------

1
ν1
ν2
------ 

 t+

ν1 ν2+
2-----------------

--dt= =
2-81

fpdf
2fpdfPurpose F probability density function (pdf).

Syntax Y = fpdf(X,V1,V2)

Description fpdf(X,V1,V2) computes the F pdf with parameters V1 and V2 at the values in
X. The arguments X, V1 and V2 must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

The parameters V1 and V2 must both be positive integers and X must lie on the
interval [0 ∞).

The probability density function for the F distribution is:

Examples y = fpdf(1:6,2,2)

y =

 0.2500 0.1111 0.0625 0.0400 0.0278 0.0204

z = fpdf(3,5:10,5:10)

z =

 0.0689 0.0659 0.0620 0.0577 0.0532 0.0487

y f x ν1 ν2,()
Γ

ν1 ν2+()
2-----------------------

Γ
ν1
2------ 

 Γ
ν2
2------ 

 

ν1
ν2
------ 

 
ν1

2----- x
ν1 2–

2--------------

1
ν1
ν2
------ 

 x+

ν1 ν2+
2-----------------

---= =
2-82

frnd
2frndPurpose Random numbers from the F distribution.

Syntax R = frnd(V1,V2)

R = frnd(V1,V2,m)

R = frnd(V1,V2,m,n)

Description R = frnd(V1,V2) generates random numbers from the F distribution with
numerator degrees of freedom, V1, and denominator degrees of freedom, V2.
The size of R is the common size of V1 and V2 if both are matrices. If either
parameter is a scalar, the size of R is the size of the other parameter.

R = frnd(V1,V2,m) generates random numbers from the F distribution with
parameters V1 and V2. m is a 1-by-2 vector that contains the row and column
dimensions of R.

R = frnd(V1,V2,m,n) generates random numbers from the F distribution with
parameters V1 and V2. The scalars m and n are the row and column dimensions
of R.

Examples n1 = frnd(1:6,1:6)

n1 =

 0.0022 0.3121 3.0528 0.3189 0.2715 0.9539

n2 = frnd(2,2,[2 3])

n2 =

 0.3186 0.9727 3.0268
 0.2052 148.5816 0.2191

n3 = frnd([1 2 3;4 5 6],1,2,3)

n3 =

 0.6233 0.2322 31.5458
 2.5848 0.2121 4.4955
2-83

fstat
2fstatPurpose Mean and variance for the F distribution.

Syntax [M,V] = fstat(V1,V2)

Description For the F distribution:

• The mean, for values of n2 greater than 2, is:

• The variance, for values of n greater than 4, is:

The mean of the F distribution is undefined if ν2 is less than 3. The variance is
undefined for ν2 less than 5.

Examples fstat returns NaN when the mean and variance are undefined.

[m,v] = fstat(1:5,1:5)

m =

NaN NaN 3.0000 2.0000 1.6667

v =

NaN NaN NaN NaN 8.8889

ν2
ν2 2–

2ν2
2 ν1 ν2 2–+()

ν1 ν2 2–()2 ν2 4–()
--
2-84

fsurfht
2fsurfhtPurpose Interactive contour plot of a function.

Syntax fsurfht('fun',xlims,ylims)

fsurfht('fun',xlims,ylims,p1,p2,p3,p4,p5)

Description fsurfht('fun',xlims,ylims) is an interactive contour plot of the function
specified by the text variable fun. The x-axis limits are specified by xlims =
[xmin xmax] and the y-axis limits specified by ylims.

fsurfht('fun',xlims,ylims,p1,p2,p3,p4,p5) allows for five optional
parameters that you can supply to the function 'fun'. The first two arguments
of fun are the x-axis variable and y-axis variable, respectively.

There are vertical and horizontal reference lines on the plot whose intersection
defines the current x-value and y-value. You can drag these dotted white
reference lines and watch the calculated z-values (at the top of the plot) update
simultaneously. Alternatively, you can get a specific z-value by typing the
x-value and y-value into editable text fields on the x-axis and y-axis
respectively.

Example Plot the Gaussian likelihood function for the gas.mat data.

load gas

Write the M-file, gauslike.m.

function z = gauslike(mu,sigma,p1)
n = length(p1);
z = ones(size(mu));
for i = 1:n
z = z .* (normpdf(p1(i),mu,sigma));
end
2-85

fsurfht
gauslike calls normpdf treating the data sample as fixed and the parameters
µ and σ as variables. Assume that the gas prices are normally distributed and
plot the likelihood surface of the sample.

fsurfht('gauslike',[112 118],[3 5],price1)

The sample mean is the x-value at the maximum, but the sample standard
deviation is not the y-value at the maximum.

mumax = mean(price1)

mumax =

 115.1500

sigmamax = std(price1)*sqrt(19/20)

sigmamax =

 3.7719

112 113 114 115 116 117 118
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

 2e-25

 2e-25

 4e-25

 6e-25

 8e-25

 1e-24

 1.2e-24
2-86

fullfact
2fullfactPurpose Full-factorial experimental design.

Syntax design = fullfact(levels)

Description design = fullfact(levels) give the factor settings for a full factorial design.
Each element in the vector levels specifies the number of unique values in the
corresponding column of design.

For example, if the first element of levels is 3, then the first column of design
contains only integers from 1 to 3.

Example If levels = [2 4], fullfact generates an eight run design with two levels in
the first column and four in the second column.

d = fullfact([2 4])

d =

 1 1
 2 1
 1 2
 2 2
 1 3
 2 3
 1 4
 2 4

See Also ff2n, dcovary, daugment, cordexch
2-87

gamcdf
2gamcdfPurpose Gamma cumulative distribution function (cdf).

Syntax P = gamcdf(X,A,B)

Description gamcdf(X,A,B) computes the gamma cdf with parameters A and B at the values
in X. The arguments X, A, and B must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

Parameters A and B are positive.

The gamma cdf is:

The result, p, is the probability that a single observation from a gamma
distribution with parameters a and b will fall in the interval [0 x].

gammainc is the gamma distribution with a single parameter, a, with b at its
default value of 1.

Examples a = 1:6;
b = 5:10;
prob = gamcdf(a.∗b,a,b)

prob =

 0.6321 0.5940 0.5768 0.5665 0.5595 0.5543

The mean of the gamma distribution is the product of the parameters, a*b. In
this example as the mean increases, it approaches the median (i.e., the
distribution gets more symmetric).

p F x a b,() 1

baΓ a()
------------------ ta 1– e

t
b---–

td
0

x

∫= =
2-88

gamfit
2gamfitPurpose Parameter estimates and confidence intervals for gamma distributed data.

Syntax phat = gamfit(x)

[phat,pci] = gamfit(x)

[phat,pci] = gamfit(x,alpha)

Description phat = gamfit(x) returns the maximum likelihood estimates of the
parameters of the gamma distribution given the data in the vector, x.

[phat,pci] = gamfit(x) gives MLEs and 95% percent confidence intervals.
The first row of pci is the lower bound of the confidence intervals; the last row
is the upper bound.

[phat,pci] = gamfit(x,alpha) returns 100(1–alpha) percent confidence
intervals. For example, alpha = 0.01 yields 99% confidence intervals.

Example Note the 95% confidence intervals in the example bracket the “true” parameter
values, 2 and 4, respectively.

a = 2; b = 4;
r = gamrnd(a,b,100,1);
[p,ci] = gamfit(r)

p =

 2.1990 3.7426

ci =

 1.6840 2.8298
 2.7141 4.6554

Reference Hahn, G. J., and S.S. Shapiro, Statistical Models in Engineering, Wiley
Classics Library John Wiley & Sons, New York. 1994. p. 88.

See Also betafit, binofit, expfit, normfit, poissfit, unifit, weibfit
2-89

gaminv
2gaminvPurpose Inverse of the gamma cumulative distribution function (cdf).

Syntax X = gaminv(P,A,B)

Description gaminv(P,A,B) computes the inverse of the gamma cdf with parameters A and
B for the probabilities in P. The arguments P, A and B must all be the same size
except that scalar arguments function as constant matrices of the common size
of the other arguments.

The parameters A and B must both be positive and P must lie on the interval
[0 1].

The gamma inverse function in terms of the gamma cdf is:

Algorithm There is no known analytic solution to the integral equation above. gaminv uses
an iterative approach (Newton’s method) to converge to the solution.

Examples This example shows the relationship between the gamma cdf and its inverse
function.

a = 1:5;
b = 6:10;
x = gaminv(gamcdf(1:5,a,b),a,b)

x =

 1.0000 2.0000 3.0000 4.0000 5.0000

x F 1– p a b,() x:F x a b,() p={ }= =

where p F x a b,()
1

baΓ a()
------------------ ta 1– e

t
b---–

td
0

x

∫= =
2-90

gamlike
2gamlikePurpose Negative gamma log-likelihood function.

Syntax logL = gamlike(params,data)

[logL,info] = gamlike(params,data)

Description logL = gamlike(params,data) returns the negative of the gamma
log-likelihood function for the parameters, params, given data. The length of
the vector, logL, is the length of the vector, data.

[logL,info] = gamlike(params,data) adds Fisher's information matrix,
info. The diagonal elements of info are the asymptotic variances of their
respective parameters.

gamlike is a utility function for maximum likelihood estimation of the gamma
distribution. Since gamlike returns the negative gamma log-likelihood
function, minimizing gamlike using fmins is the same as maximizing the
likelihood.

Example Continuing the example for gamfit:

a = 2; b = 3;
r = gamrnd(a,b,100,1);
[logL,info] = gamlike([2.1990 2.8069],r)

logL =

 267.5585

info =

 0.0690 –0.0790
 –0.0790 0.1220

See Also betalike, gamfit, mle, weiblike
2-91

gampdf
2gampdfPurpose Gamma probability density function (pdf).

Syntax Y = gampdf(X,A,B)

Description gampdf(X,A,B) computes the gamma pdf with parameters A and B at the values
in X. The arguments X, A and B must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

The parameters A and B must both be positive and X must lie on the interval
[0 ∞).

The gamma pdf is:

Gamma probability density function is useful in reliability models of lifetimes.
The gamma distribution is more flexible than the exponential in that the
probability of surviving an additional period may depend on age. Special cases
of the gamma function are the exponential and χ2 functions.

Examples The exponential distribution is a special case of the gamma distribution.

mu = 1:5;
y = gampdf(1,1,mu)

y =

 0.3679 0.3033 0.2388 0.1947 0.1637

y1 = exppdf(1,mu)

y1 =

 0.3679 0.3033 0.2388 0.1947 0.1637

y f x a b,()
1

baΓ a()
------------------xa 1– e

x
b---–

= =
2-92

gamrnd
2gamrndPurpose Random numbers from the gamma distribution.

Syntax R = gamrnd(A,B)

R = gamrnd(A,B,m)

R = gamrnd(A,B,m,n)

Description R = gamrnd(A,B) generates gamma random numbers with parameters A and
B. The size of R is the common size of A and B if both are matrices. If either
parameter is a scalar, the size of R is the size of the other parameter.

R = gamrnd(A,B,m) generates gamma random numbers with parameters A and
B. m is a 1-by-2 vector that contains the row and column dimensions of R.

R = gamrnd(A,B,m,n) generates gamma random numbers with parameters A
and B. The scalars m and n are the row and column dimensions of R.

Examples n1 = gamrnd(1:5,6:10)

n1 =

 9.1132 12.8431 24.8025 38.5960 106.4164

n2 = gamrnd(5,10,[1 5])

n2 =

 30.9486 33.5667 33.6837 55.2014 46.8265

n3 = gamrnd(2:6,3,1,5)

n3 =

 12.8715 11.3068 3.0982 15.6012 21.6739
2-93

gamstat
2gamstatPurpose Mean and variance for the gamma distribution.

Syntax [M,V] = gamstat(A,B)

Description For the gamma distribution:

• The mean is ab.

• The variance is ab2.

Examples [m,v] = gamstat(1:5,1:5)

m =

 1 4 9 16 25

v =

 1 8 27 64 125

[m,v] = gamstat(1:5,1./(1:5))

m =

 1 1 1 1 1

v =

 1.0000 0.5000 0.3333 0.2500 0.2000
2-94

geocdf
2geocdfPurpose Geometric cumulative distribution function (cdf).

Syntax Y = geocdf(X,P)

Description geocdf(X,P) computes the geometric cdf with probabilities, P, at the values in
X. The arguments X and P must be the same size except that a scalar argument
functions as a constant matrix of the same size as the other argument.

The parameter, P, is on the interval [0 1].

The geometric cdf is:

where:

The result, y, is the probability of observing up to x trials before a success when
the probability of success in any given trial is p.

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that
is a success. What is the probability of observing three or fewer tails before
getting a heads?

p = geocdf(3,0.5)

p =

 0.9375

y F x p() pqi

i 0=

floorx

∑= =

q 1 p–=
2-95

geoinv
2geoinvPurpose Inverse of the geometric cumulative distribution function (cdf).

Syntax X = geoinv(Y,P)

Description geoinv(Y,P) returns the smallest integer X such that the geometric cdf
evaluated at X is equal to or exceeds Y. You can think of Y as the probability of
observing X successes in a row in independent trials where P is the probability
of success in each trial.

The arguments P and Y must lie on the interval [0 1]. Each X is a positive
integer.

Examples The probability of correctly guessing the result of 10 coin tosses in a row is less
than 0.001 (unless the coin is not fair.)

psychic = geoinv(0.999,0.5)

psychic =

 9

The example below shows the inverse method for generating random numbers
from the geometric distribution.

rndgeo = geoinv(rand(2,5),0.5)

rndgeo =

 0 1 3 1 0
 0 1 0 2 0
2-96

geomean
2geomeanPurpose Geometric mean of a sample.

Syntax m = geomean(X)

Description geomean calculates the geometric mean of a sample. For vectors, geomean(x) is
the geometric mean of the elements in x. For matrices, geomean(X) is a row
vector containing the geometric means of each column.

The geometric mean is:

Examples The sample average is greater than or equal to the geometric mean.

x = exprnd(1,10,6);
geometric = geomean(x)

geometric =

 0.7466 0.6061 0.6038 0.2569 0.7539 0.3478

average = mean(x)

average =

 1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

See Also mean, median, harmmean, trimmean

m xi

i 1=

n

∏
1
n---

=

2-97

geopdf
2geopdfPurpose Geometric probability density function (pdf).

Syntax Y = geopdf(X,P)

Description geocdf(X,P) computes the geometric pdf with probabilities, P, at the values in
X. The arguments X and P must be the same size except that a scalar argument
functions as a constant matrix of the same size as the other argument.

The parameter, P, is on the interval [0 1].

The geometric pdf is:

where:

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that
is a success. What is the probability of observing exactly three tails before
getting a heads?

p = geopdf(3,0.5)

p =

 0.0625

y f x p() pqxI 0 1 K, ,() x()= =

q 1 p–=
2-98

geornd
2georndPurpose Random numbers from the geometric distribution.

Syntax R = geornd(P)

R = geornd(P,m)

R = geornd(P,m,n)

Description The geometric distribution is useful when you want to model the number of
failed trials in a row before a success where the probability of success in any
given trial is the constant P.

R = geornd(P) generates geometric random numbers with probability
parameter, P . The size of R is the size of P.

R = geornd(P,m) generates geometric random numbers with probability
parameter, P. m is a 1-by-2 vector that contains the row and column dimensions
of R.

R = geornd(P,m,n) generates geometric random numbers with probability
parameter, P. The scalars m and n are the row and column dimensions of R.

The parameter P must lie on the interval [0 1].

Examples r1 = geornd(1 ./ 2.^(1:6))
r1 =

 2 10 2 5 2 60

r2 = geornd(0.01,[1 5])

r2 =

 65 18 334 291 63

r3 = geornd(0.5,1,6)

r3 =

 0 7 1 3 1 0
2-99

geostat
2geostatPurpose Mean and variance for the geometric distribution.

Syntax [M,V] = geostat(P)

Description For the geometric distribution:

• The mean is .

• The variance is .

where q = 1– p.

Examples [m,v] = geostat(1./(1:6))

m =

0 1.0000 2.0000 3.0000 4.0000 5.0000

v =

0 2.0000 6.0000 12.0000 20.0000 30.0000

q
p---

q

p2------
2-100

gline
2glinePurpose Interactively draw a line in a figure.

Syntax gline(fig)

h = gline(fig)

gline

Description gline(fig) draws a line segment by clicking the mouse at the two end-points
of the line segment in the figure, fig. A rubber band line tracks the mouse
movement.

h = gline(fig) returns the handle to the line in h.

gline with no input arguments draws in the current figure.

See Also refline, gname
2-101

gname
2gnamePurpose Label plotted points with their case names or case number.

Syntax gname('cases')
gname
h = gname('cases',line_handle)

Description gname('cases') displays the graph window, puts up a cross-hair, and waits for
a mouse button or keyboard key to be pressed. Position the cross-hair with the
mouse and click once near each point that you want to label. When you are
done, press the Return or Enter key and the labels will appear at each point
that you clicked. 'cases' is a string matrix. Each row is the case name of a data
point.

gname with no arguments labels each case with its case number.

h = gname(cases,line_handle) returns a vector of handles to the text objects
on the plot. Use the scalar, line_handle, to identify the correct line if there is
more than one line object on the plot.

Example Let’s use the city ratings datasets to find out which cities are the best and worst
for education and the arts.
2-102

gname
load cities
education = ratings(:,6); arts = ratings(:,7);
plot(education,arts,'+')
gname(names)

See Also gtext

1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 104

Pascagoula, MS

New York, NY
2-103

grpstats
2grpstatsPurpose Summary statistics by group.

Syntax means = grpstats(X,group)

[means,sem,counts] = grpstats(X,group)

grpstats(x,group)
grpstats(x,group,alpha)

Description means = grpstats(X,group) returns the means of each column of X by group.
X is a matrix of observations. group is a column of positive integers that
indicates the group membership of each row in X.

[means,sem,counts] = grpstats(x,group,alpha) supplies the standard
error of the mean in sem. counts is the same size as the other outputs. The i-th
row of counts contains the number of elements in the i-th group.

grpstats(x,group) displays a plot of the means versus index with 95%
confidence intervals about the mean value of for each value of index.

grpstats(x,group,alpha) plots 100(1 – alpha)% confidence intervals around
each mean.

Example We assign 100 observations to one of four groups. For each observation we
measure five quantities with true means from 1 to 5. grpstats allows us to
compute the means for each group.

group = unidrnd(4,100,1);
true_mean = 1:5;
true_mean = true_mean(ones(100,1),:);
x = normrnd(true_mean,1);
means = grpstats(x,group)

means =

 0.7947 2.0908 2.8969 3.6749 4.6555
 0.9377 1.7600 3.0285 3.9484 4.8169
 1.0549 2.0255 2.8793 4.0799 5.3740
 0.7107 1.9264 2.8232 3.8815 4.9689

See Also tabulate, crosstab
2-104

harmmean
2harmmeanPurpose Harmonic mean of a sample of data.

Syntax m = harmmean(X)

Description harmmean calculates the harmonic mean of a sample. For vectors,
harmmean(x) is the harmonic mean of the elements in x. For matrices,
harmmean(X) is a row vector containing the harmonic means of each column.

The harmonic mean is:

Examples The sample average is greater than or equal to the harmonic mean.

x = exprnd(1,10,6);
harmonic = harmmean(x)

harmonic =

 0.3382 0.3200 0.3710 0.0540 0.4936 0.0907

average = mean(x)

average =

 1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

See Also mean, median, geomean, trimmean

m
n

1
xi

i 1=

n

∑
---------------=
2-105

hist
2histPurpose Plot histograms.

Syntax hist(y)

hist(y,nb)

hist(y,x)

[n,x] = hist(y,...)

Description hist calculates or plots histograms.

hist(y) draws a 10-bin histogram for the data in vector y. The bins are equally
spaced between the minimum and maximum values in y.

hist(y,nb) draws a histogram with nb bins.

hist(y,x) draws a histogram using the bins in the vector, x.

[n,x] = hist(y), [n,x] = hist(y,nb), and [n,x] = hist(y,x) do not draw
graphs, but return vectors n and x containing the frequency counts and the bin
locations such that bar(x,n) plots the histogram. This is useful in situations
where more control is needed over the appearance of a graph, for example, to
combine a histogram into a more elaborate plot statement.

Examples Generate bell-curve histograms from Gaussian data.

x = –2.9:0.1:2.9;
y = normrnd(0,1,1000,1);
hist(y,x)

See Also hist is a function in MATLAB.

-3 -2 -1 0 1 2 3
0

10

20

30

40

50
2-106

histfit
2histfitPurpose Histogram with superimposed normal density.

Syntax histfit(data)

histfit(data,nbins)

h = histfit(data,nbins)

Description histfit(data,nbins) plots a histogram of the values in the vector data using
nbins bars in the histogram. With one input argument, nbins is set to the
square root of the number of elements in data.

h = histfit(data,nbins) returns a vector of handles to the plotted lines. h(1)
is the handle to the histogram, h(2) is the handle to the density curve.

Example r = normrnd(10,1,100,1);
histfit(r)

See Also hist, normfit

7 8 9 10 11 12 13
0

5

10

15

20

25
2-107

hougen
2hougenPurpose Hougen-Watson model for reaction kinetics.

Syntax yhat = hougen(beta,X)

Description yhat = hougen(beta,x) gives the predicted values of the reaction rate, yhat,
as a function of the vector of parameters, beta, and the matrix of data, X. beta
must have 5 elements and X must have three columns.

hougen is a utility function for rsmdemo.

The model form is:

Reference Bates, D., and D. Watts, Nonlinear Regression Analysis and Its Applications,
Wiley 1988. p. 271–272.

See Also rsmdemo

ŷ
β1x2 x3 β5⁄–

1 β2x1 β3x2 β4x3+ + +
---=
2-108

hygecdf
2hygecdfPurpose Hypergeometric cumulative distribution function (cdf).

Syntax P = hygecdf(X,M,K,N)

Description hygecdf(X,M,K,N) computes the hypergeometric cdf with parameters M, K, and
N at the values in X. The arguments X, M, K, and N must all be the same size
except that scalar arguments function as constant matrices of the common size
of the other arguments.

The hypergeometric cdf is:

The result, p, is the probability of drawing up to x items of a possible K in N
drawings without replacement from a group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them are
defective. What is the probability of drawing zero to two defective floppies if
you select 10 at random?

p = hygecdf(2,100,20,10)

p =

 0.6812

p F x M K N, ,()

K
i 

  M K–

N i– 
 

M
N 

 

i 0=

x

∑= =
2-109

hygeinv
2hygeinvPurpose Inverse of the hypergeometric cumulative distribution function (cdf).

Syntax X = hygeinv(P,M,K,N)

Description hygeinv(P,M,K,N) returns the smallest integer X such that the hypergeometric
cdf evaluated at X equals or exceeds P. You can think of P as the probability of
observing X defective items in N drawings without replacement from a group of
M items where K are defective.

Examples Suppose you are the Quality Assurance manager of a floppy disk
manufacturer. The production line turns out floppy disks in batches of 1,000.
You want to sample 50 disks from each batch to see if they have defects. You
want to accept 99% of the batches if there are no more than 10 defective disks
in the batch. What is the maximum number of defective disks should you allow
in your sample of 50?

x = hygeinv(0.99,1000,10,50)

x =

 3

What is the median number of defective floppy disks in samples of 50 disks
from batches with 10 defective disks?

x = hygeinv(0.50,1000,10,50)

x =

 0
2-110

hygepdf
2hygepdfPurpose Hypergeometric probability density function (pdf).

Syntax Y = hygepdf(X,M,K,N)

Description hygecdf(X,M,K,N) computes the hypergeometric pdf with parameters M, K, and
N at the values in X. The arguments X, M, K, and N must all be the same size
except that scalar arguments function as constant matrices of the common size
of the other arguments.

The parameters M, K, and N must be positive integers. Also X must be less than
or equal to all the parameters and N must be less than or equal to M.

The hypergeometric pdf is:

The result, y, is the probability of drawing exactly x items of a possible K in n
drawings without replacement from group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them are
defective. What is the probability of drawing 0 through 5 defective floppy disks
if you select 10 at random?

p = hygepdf(0:5,100,20,10)

p =

 0.0951 0.2679 0.3182 0.2092 0.0841 0.0215

y f x M K N, ,()

K
x 

  M K–

N x– 
 

M
N 

 
------------------------------= =
2-111

hygernd
2hygerndPurpose Random numbers from the hypergeometric distribution.

Syntax R = hygernd(M,K,N)

R = hygernd(M,K,N,mm)

R = hygernd(M,K,N,mm,nn)

Description R = hygernd(M,K,N) generates hypergeometric random numbers with
parameters M,K and N. The size of R is the common size of M, K, and N if all are
matrices. If any parameter is a scalar, the size of R is the common size of the
nonscalar parameters.

R = hygernd(M,K,N,mm) generates hypergeometric random numbers with
parameters M, K, and N. mm is a 1-by-2 vector that contains the row and column
dimensions of R.

R = hygernd(M,K,N,mm,nn) generates hypergeometric random numbers with
parameters M, K, and N. The scalars mm and nn are the row and column
dimensions of R.

Examples numbers = hygernd(1000,40,50)

numbers =

 1
2-112

hygestat
2hygestatPurpose Mean and variance for the hypergeometric distribution.

Syntax [MN,V] = hygestat(M,K,N)

Description For the hypergeometric distribution:

• The mean is .

• The variance is .

Examples The hypergeometric distribution approaches the binomial where
p = K/M as M goes to infinity.

[m,v] = hygestat(10.^(1:4),10.^(0:3),9)

m =

 0.9000 0.9000 0.9000 0.9000

v =

 0.0900 0.7445 0.8035 0.8094

[m,v] = binostat(9,0.1)

m =

 0.9000

v =

 0.8100

N
K
M-----

N
K
M-----

M K–
M----------------

M N–
M 1–

2-113

icdf
2icdfPurpose Inverse of a specified cumulative distribution function (icdf).

Syntax X = icdf('name',P,A1,A2,A3)

Description icdf is a utility routine allowing you to access all the inverse cdfs in the
Statistics Toolbox using the name of the distribution as a parameter.

icdf('name',P,A1,A2,A3) returns a matrix of critical values, X. 'name' is a
string containing the name of the distribution. P is a matrix of probabilities,
and A, B, and C are matrices of distribution parameters. Depending on the
distribution some of the parameters may not be necessary.

The arguments P, A1, A2, and A3 must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

Examples x = icdf('Normal',0.1:0.2:0.9,0,1)

x =

 –1.2816 –0.5244 0 0.5244 1.2816

x = icdf('Poisson',0.1:0.2:0.9,1:5)

x =

 1 1 3 5 8
2-114

inconsistent
2inconsistentPurpose Calculate the inconsistency coefficient of a cluster tree.

Syntax Y = inconsistent(Z)
Y = inconsistent(Z,d)

Description Y = inconsistent(Z) computes the inconsistency coefficient for each link of
the hierarchical cluster tree, Z. Z is an m-1 by 3 matrix generated by the
linkage function. The inconsistency coefficient characterizes each link in a
cluster tree by comparing its length with the average length of other links at
the same level of the hierarchy. The higher the value of this coefficient, the less
similar the objects connected by the link.

Y = inconsistent(Z,d) computes the inconsistency coefficient for each link in
the hierarchical cluster tree, Z, to depth d. d is an integer denoting the number
of levels of the cluster tree that are included in the calculation. By default, d=2.

The output, Y, is an m-1 by 4 matrix formatted as follows.

For each link, k, the inconsistency coefficient is calculated as:

For leaf nodes, nodes that have no further nodes under them, the inconsistency
coefficient is set to 0.

Column Description

1 Mean of the lengths of all the links included in the calculation.

2 Standard deviation of all the links included in the calculation.

3 Number of links included in the calculation.

4 Inconsistency coefficient.

Y k 4,() z k 3,() Y k 1,()–() Y k 2,()⁄=
2-115

inconsistent
Example rand('seed',12);
X = rand(10,2);
Y = pdist(X);
Z = linkage(Y,'centroid');
W = inconsistent(Z,3)

W =

0.0423 0 1.0000 0
0.1406 0 1.0000 0
0.1163 0.1047 2.0000 0.7071
0.2101 0 1.0000 0
0.2054 0.0886 3.0000 0.6792
0.1742 0.1762 3.0000 0.6568
0.2336 0.1317 4.0000 0.6408
0.3081 0.2109 5.0000 0.7989
0.4610 0.3728 4.0000 0.8004

See Also cluster, cophenet, clusterdata, dendrogram, linkage, pdist, squareform
2-116

iqr
2iqrPurpose Interquartile range (IQR) of a sample.

Syntax y = iqr(X)

Description iqr(X) computes the difference between the 75th and the 25th percentiles of
the sample in X. The IQR is a robust estimate of the spread of the data, since
changes in the upper and lower 25% of the data do not affect it.

If there are outliers in the data, then the IQR is more representative than the
standard deviation as an estimate of the spread of the body of the data. The
IQR is less efficient than the standard deviation as an estimate of the spread,
when the data is all from the normal distribution.

Multiply the IQR by 0.7413 to estimate σ (the second parameter of the normal
distribution.)

Examples This Monte Carlo simulation shows the relative efficiency of the IQR to the
sample standard deviation for normal data.

x = normrnd(0,1,100,100);
s = std(x);
s_IQR = 0.7413 ∗ iqr(x);
efficiency = (norm(s – 1)./norm(s_IQR – 1)).^2

efficiency =

 0.3297

See Also std, mad, range
2-117

kurtosis
2kurtosisPurpose Sample kurtosis.

Syntax k = kurtosis(X)

Description k = kurtosis(X) returns the sample kurtosis of X. For vectors,
kurtosis(x) is the kurtosis of the elements in the vector, x. For matrices
kurtosis(X) returns the sample kurtosis for each column of X.

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the
normal distribution is 3. Distributions that are more outlier-prone than the
normal distribution have kurtosis greater than 3; distributions that are less
outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as

where E(x) is the expected value of x.

Note: Some definitions of kurtosis subtract 3 from the computed value, so that
the normal distribution has kurtosis of 0. The kurtosis function does not use
this convention.

Example X = randn([5 4])

X =

 1.1650 1.6961 –1.4462 –0.3600
 0.6268 0.0591 –0.7012 –0.1356
 0.0751 1.7971 1.2460 –1.3493
 0.3516 0.2641 –0.6390 –1.2704
 –0.6965 0.8717 0.5774 0.9846

k = kurtosis(X)

k =

 2.1658 1.2967 1.6378 1.9589

See Also mean, moment, skewness, std, var

k
E x µ–()4

σ4------------------------=
2-118

leverage
2leveragePurpose Leverage values for a regression.

Syntax h = leverage(DATA)

h = leverage(DATA,'model')

Description h = leverage(DATA) finds the leverage of each row (point) in the matrix, DATA
for a linear additive regression model.

h = leverage(DATA,'model') finds the leverage on a regression, using a
specified model type. 'model' can be one of these strings:

• 'interaction' – includes constant, linear, and cross product terms.

• 'quadratic' – interactions plus squared terms.

• 'purequadratic' – includes constant, linear and squared terms.

Leverage is a measure of the influence of a given observation on a regression
due to its location in the space of the inputs.

Example One rule of thumb is to compare the leverage to 2p/n where n is the number of
observations and p is the number of parameters in the model. For the Hald
dataset this value is 0.7692.

load hald
h = max(leverage(ingredients,'linear'))

h =

 0.7004

Since 0.7004 < 0.7692, there are no high leverage points using this rule.

Algorithm [Q,R] = qr(x2fx(DATA,'model'));

leverage = (sum(Q'.*Q'))'

Reference Goodall, C. R. (1993). Computation using the QR decomposition. Handbook in
Statistics, Volume 9. Statistical Computing (C. R. Rao, ed.). Amsterdam, NL
Elsevier/North-Holland.

See Also regstats
2-119

linkage
2linkagePurpose Create hierachical cluster tree.

Syntax Z = linkage(Y)
Z = linkage(Y,’method’)

Description Z = linkage(Y) creates a hierarchical cluster tree, using the Single Linkage
algorithm. The input matrix, Y, is the distance vector output by the pdist
function, a vector of length by 1, where m is the number of
objects in the original dataset.

Z = linkage(Y,’method’) computes a hierarchical cluster tree using the
algorithm specified by ‘method’. method can be any of the following character
strings that identify ways to create the cluster hierarchy. Their definitions are
explained in the section, “Mathematical Definitions.”

The output, Z, is an m-1 by 3 matrix containing cluster tree information. The
leaf nodes in the cluster hierarchy are the objects in the original dataset,
numbered from 1 to m. They are the singleton clusters from which all higher
clusters are built. Each newly formed cluster, corresponding to row i in Z, is
assigned the index m+i, where m is the total number of initial leaves.

Columns 1 and 2, Z(i,1:2), contain the indices of the objects that were linked
in pairs to form a new cluster. This new cluster is assigned the index value m+i.
There are m-1 higher clusters that correspond to the interior nodes of the
hierarchical cluster tree.

Column 3, Z(i,3), contains the corresponding linkage distances between the
objects paired in the clusters at each row i.

String Meaning

'single' Shortest distance (default)

'complete' Largest distance

'average' Average distance

'centroid' Centroid distance

'ward' Incremental sum of squares

m 1–() m 2⁄⋅
2-120

linkage
For example, consider a case with 30 initial nodes. If the tenth cluster formed
by the linkage function combines object 5 and object 7 and their distance is 1.5,
then row 10 of Z will contain the values (5,7,1.5). This newly formed cluster will
have the index 10+30=40. If cluster 40 shows up in a later row, that means this
newly formed cluster is being combined again into some bigger cluster.

Mathematical Definitions. The ‘method’ argument is a character string that
specifies the algorithm used to generate the hierachical cluster tree
information. These linkage algorithms are based on various measurements of
proximity between two groups of objects. If nr is the number of objects in cluster
r and ns is the number of objects in cluster s, and xri is the ith object in cluster
r, the definitions of these various measurements are as follows:

• Single linkage, also called nearest neighbor, uses the smallest distance
between objects in the two groups.

• Complete linkage, also called furthest neighbor, uses the largest distance
between objects in the two groups.

• Average linkage uses the average distance between all pairs of objects in
cluster r and cluster s.

• Centroid linkage uses the distance between the centroids of the two
groups

where:

d r s,() min dist xri xsj,()() i i … nr, ,()∈ j 1 … ns, ,()∈, ,=

d r s,() max dist xri xsj,()() i 1 … nr, ,()∈ j 1 … ns, ,()∈, ,=

d r s,()
1

nrns
------------ dist xri xsj,()

j 1=

ns

∑
i 1=

nr

∑=

d r s,() d xr xs,()=

xr
1
nr
------ xri

i 1=

nr

∑=
2-121

linkage
and is defined similarly.

• Ward linkage uses the incremental sum of squares; that is, the increase in
the total within-group sum of squares as a result of joining groups r and s. It
is given by

where is the distance between cluster r and cluster s defined in the
Centroid linkage. The within-group sum of squares of a cluster is defined as
the sum of the squares of the distance between all objects in the cluster and
the centroid of the cluster.

Example X = [3 1.7; 1 1; 2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];
Y = pdist(x);
Z = linkage(y)

Z =

2.0000 5.0000 0.2000
3.0000 4.0000 0.5000
8.0000 6.0000 0.5099
1.0000 7.0000 0.7000
11.0000 9.0000 1.2806
12.0000 10.0000 1.3454

See Also cluster, clusterdata, cophenet, dendrogram, inconsistent, pdist,
squareform

xs

d r s,() nrnsdrs
2 nr ns+()⁄=

drs
2

2-122

logncdf
2logncdfPurpose Lognormal cumulative distribution function.

Syntax P = logncdf(X,MU,SIGMA)

Description P = logncdf(X,MU,SIGMA) computes the lognormal cdf with mean MU and
standard deviation SIGMA at the values in X.

The size of P is the common size of X, MU and SIGMA. A scalar input functions as
a constant matrix of the same size as the other inputs.

The lognormal cdf is:

Example x = (0:0.2:10);
y = logncdf(x,0,1);
plot(x,y);grid;xlabel('x');ylabel('p')

Reference Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 102–105.

See Also cdf, logninv, lognpdf, lognrnd, lognstat

p F x µ σ,()
1

σ 2π
--------------- e

ln t() µ–()– 2

2σ2--------------------------------

t----------------------------- td0

x

∫= =

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

p

2-123

logninv
2logninvPurpose Inverse of the lognormal cumulative distribution function (cdf).

Syntax X = logninv(P,MU,SIGMA)

Description X = logninv(P,MU,SIGMA) computes the inverse lognormal cdf with mean MU
and standard deviation SIGMA, at the probabilities in P.

The size of X is the common size of P, MU and SIGMA.

We define the lognormal inverse function in terms of the lognormal cdf.

where

Example p = (0.005:0.01:0.995);
crit = logninv(p,1,0.5);
plot(p,crit)
xlabel('Probability');ylabel('Critical Value');grid

Reference Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 102–105.

See Also icdf, logncdf, lognpdf, lognrnd, lognstat

x F 1– p µ σ,() x:F x µ σ,() p={ }= =

p F x µ σ,()
1

σ 2π
--------------- e

ln t() µ–()– 2

2σ2--------------------------------

t----------------------------- td0

x

∫= =

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Probability

C
rit

ic
al

 V
al

ue
2-124

lognpdf
2lognpdfPurpose Lognormal probability density function (pdf).

Syntax Y = lognpdf(X,MU,SIGMA)

Description Y = logncdf(X,MU,SIGMA) computes the lognormal cdf with mean MU and
standard deviation SIGMA at the values in X.

The size of Y is the common size of X, MU and SIGMA. A scalar input functions as
a constant matrix of the same size as the other inputs.

The lognormal pdf is:

Example x = (0:0.02:10);
y = lognpdf(x,0,1);
plot(x,y);grid;xlabel('x');ylabel('p')

Reference Mood, A. M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of
Statistics, Third Edition, McGraw Hill 1974 p. 540–541.

See Also logncdf, logninv, lognrnd, lognstat

y f x µ σ,()
1

xσ 2π
------------------e

ln x() µ–()– 2

2σ2---------------------------------

= =

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

x

p

2-125

lognrnd
2lognrndPurpose Random matrices from the lognormal distribution.

Syntax R = lognrnd(MU,SIGMA)

R = lognrnd(MU,SIGMA,m)

R = lognrnd(MU,SIGMA,m,n)

Description R = lognrnd(MU,SIGMA) generates lognormal random numbers with
parameters, MU and SIGMA. The size of R is the common size of MU and SIGMA if
both are matrices. If either parameter is a scalar, the size of R is the size of the
other parameter.

R = lognrnd(MU,SIGMA,m) generates lognormal random numbers with
parameters MU and SIGMA. m is a 1-by-2 vector that contains the row and column
dimensions of R.

R = lognrnd(MU,SIGMA,m,n) generates lognormal random numbers with
parameters MU and SIGMA. The scalars m and n are the row and column
dimensions of R.

Example r = lognrnd(0,1,4,3)

r =

 3.2058 0.4983 1.3022
 1.8717 5.4529 2.3909
 1.0780 1.0608 0.2355
 1.4213 6.0320 0.4960

Reference Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 102–105.

See Also random, logncdf, logninv, lognpdf, lognstat
2-126

lognstat
2lognstatPurpose Mean and variance for the lognormal distribution.

Syntax [M,V] = lognstat(MU,SIGMA)

Description [M,V] = lognstat(MU,SIGMA) returns the mean and variance of the lognormal
distribution with parameters MU and SIGMA. The size of M and V is the common
size of MU and SIGMA if both are matrices. If either parameter is a scalar, the
size of M and V is the size of the other parameter.

For the lognormal distribution, the mean is:

The variance is:

Example [m,v]= lognstat(0,1)

m =

 1.6487

v =

 7.0212

Reference Mood, A. M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of
Statistics, Third Edition, McGraw Hill 1974 p. 540–541.

See Also logncdf, logninv, lognrnd, lognrnd

e
µ σ2

2-----+ 
 

e 2µ 2σ2+() e 2µ σ2+()
–

2-127

lsline
2lslinePurpose Least squares fit line(s).

Syntax lsline

h = lsline

Description lsline superimposes the least squares line on each line object in the current
axes (except LineStyles '–','– –','.–').

h = lsline returns the handles to the line objects.

Example y = [2 3.4 5.6 8 11 12.3 13.8 16 18.8 19.9]';
plot(y,'+');
lsline;

See Also polyfit, polyval

0 2 4 6 8 10
0

5

10

15

20
2-128

mad
2madPurpose Mean absolute deviation (MAD) of a sample of data.

Syntax y = mad(X)

Description mad(X) computes the average of the absolute differences between a set of data
and the sample mean of that data. For vectors, mad(x) returns the mean
absolute deviation of the elements of x. For matrices, mad(X) returns the MAD
of each column of X.

The MAD is less efficient than the standard deviation as an estimate of the
spread, when the data is all from the normal distribution.

Multiply the MAD by 1.3 to estimate σ (the second parameter of the normal
distribution).

Examples This example shows a Monte Carlo simulation of the relative efficiency of the
MAD to the sample standard deviation for normal data.

x = normrnd(0,1,100,100);
s = std(x);
s_MAD = 1.3 ∗ mad(x);
efficiency = (norm(s – 1)./norm(s_MAD – 1)).^2

efficiency =

 0.5972

See Also std, range
2-129

mahal
2mahalPurpose Mahalanobis distance.

Syntax d = mahal(Y,X)

Description mahal(Y,X) computes the Mahalanobis distance of each point (row) of the
matrix, Y, from the sample in the matrix, X.

The number of columns of Y must equal the number of columns in X, but the
number of rows may differ. The number of rows in X must exceed the number
of columns.

The Mahalanobis distance is a multivariate measure of the separation of a data
set from a point in space. It is the criterion minimized in linear discriminant
analysis.

Example The Mahalanobis distance of a matrix, r, when applied to itself is a way to find
outliers.

r = mvnrnd([0 0],[1 0.9;0.9 1],100);
r = [r;10 10];
d = mahal(r,r);
last6 = d(96:101)

last6 =

 1.1036
 2.2353
 2.0219
 0.3876
 1.5571
 52.7381

The last element is clearly an outlier.

See Also classify
2-130

mean
2meanPurpose Average or mean value of vectors and matrices.

Syntax m = mean(X)

Description mean calculates the sample average.

For vectors, mean(x) is the mean value of the elements in vector x. For
matrices, mean(X) is a row vector containing the mean value of each column.

Example These commands generate five samples of 100 normal random numbers with
mean, zero, and standard deviation, one. The sample averages in xbar are
much less variable (0.00 ± 0.10).

x = normrnd(0,1,100,5);
xbar = mean(x)

xbar =

 0.0727 0.0264 0.0351 0.0424 0.0752

See Also median, std, cov, corrcoef, var

mean is a function in the MATLAB Toolbox.

xj
1
n--- xij

i 1=

n

∑=
2-131

median
2medianPurpose Median value of vectors and matrices.

Syntax m = median(X)

Description median(X) calculates the median value, which is the 50th percentile of a
sample. The median is a robust estimate of the center of a sample of data, since
outliers have little effect on it.

For vectors, median(x) is the median value of the elements in vector x. For
matrices, median(X) is a row vector containing the median value of each
column. Since median is implemented using sort, it can be costly for large
matrices.

Examples xodd = 1:5;
modd = median(xodd)

modd =

 3

meven = median(xeven)

meven =

 2.5000

This example shows robustness of the median to outliers.

xoutlier = [x 10000];
moutlier = median(xoutlier)

moutlier =

 3

See Also mean, std, cov, corrcoef

median is a function in MATLAB.
2-132

mle
2mlePurpose Maximum likelihood estimation.

Syntax phat = mle('dist',data)

[phat,pci] = mle('dist',data)

[phat,pci] = mle('dist',data,alpha)

[phat,pci] = mle('dist',data,alpha,p1)

Description phat = mle('dist',data) returns the maximum likelihood estimates (MLEs)
for the distribution specified in 'dist' using the sample in the vector, data.

[phat,pci] = mle('dist',data) returns the MLEs and 95% percent
confidence intervals.

[phat,pci] = mle('dist',data,alpha) returns the MLEs and
100(1–alpha) percent confidence intervals given the data and the specified
alpha.

[phat,pci] = mle('dist',data,alpha,p1) is used for the binomial
distribution only. p1 is the number of trials.

Example rv = binornd(20,0.75)
rv =

 16

[p,pci] = mle('binomial',rv,0.05,20)

p =

 0.8000

pci =

 0.5634
 0.9427

See Also betafit, binofit, expfit, gamfit, normfit, poissfit, weibfit
2-133

moment
2momentPurpose Central moment of all orders.

Syntax m = moment(X,order)

Description m = moment(X,order) returns the central moment of X specified by the positive
integer, order. For vectors, moment(X,order) returns the central moment of
the specified order for the elements of x. For matrices, moment(X,order)
returns central moment of the specified order for each column.

Note that the central first moment is zero, and the second central moment is
the variance computed using a divisor of n rather than n–1, where n is the
length of the vector, x or the number of rows in the matrix, X.

The central moment of order k of a distribution is defined as:

where E(x) is the expected value of x.

Example X = randn([6 5])

X =

 1.1650 0.0591 1.2460 –1.2704 –0.0562
 0.6268 1.7971 –0.6390 0.9846 0.5135
 0.0751 0.2641 0.5774 –0.0449 0.3967
 0.3516 0.8717 –0.3600 –0.7989 0.7562
 –0.6965 –1.4462 –0.1356 –0.7652 0.4005
 1.6961 –0.7012 –1.3493 0.8617 –1.3414

m = moment(X,3)

m =

 –0.0282 0.0571 0.1253 0.1460 –0.4486

See Also kurtosis, mean, skewness, std, var

mn E x µ–()k
=

2-134

mvnrnd
2mvnrndPurpose Random matrices from the multivariate normal distribution.

Syntax r = mvnrnd(mu,SIGMA,cases)

Description r = mvnrnd(mu,SIGMA,cases) returns a matrix of random numbers chosen
from the multivariate normal distribution with mean vector, mu, and
covariance matrix, SIGMA. cases is the number of rows in r.

SIGMA is a symmetric positive definite matrix with size equal to the length of
mu.

Example mu = [2 3];
sigma = [1 1.5; 1.5 3];
r = mvnrnd(mu,sigma,100);
plot(r(:,1),r(:,2),'+')

See Also normrnd

-1 0 1 2 3 4 5
-2

0

2

4

6

8

2-135

nanmax
2nanmaxPurpose Maximum ignoring NaNs.

Syntax m = nanmax(a)

[m,ndx] = nanmax(a)

m = nanmax(a,b)

Description m = nanmax(a) returns the maximum with NaNs treated as missing. For
vectors, nanmax(a) is the largest non-NaN element in a. For matrices,
nanmax(A) is a row vector containing the maximum non-NaN element from each
column.

[m,ndx] = nanmax(a) also returns the indices of the maximum values in vector
ndx.

m = nanmax(a,b) returns the larger of a or b, which must match in size.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

 NaN 1 6
 3 5 NaN
 4 NaN 2

[nmax,maxidx] = nanmax(m)

nmax =

 4 5 6

maxidx =

 3 2 1

See Also nanmin, nanmean, nanmedian, nanstd, nansum
2-136

nanmean
2nanmeanPurpose Mean ignoring NaNs

Syntax y = nanmean(X)

Description nanmean(X) the average treating NaNs as missing values.

For vectors, nanmean(x) is the mean of the non-NaN elements of x. For matrices,
nanmean(X) is a row vector containing the mean of the non-NaN elements in
each column.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

 NaN 1 6
 3 5 NaN
 4 NaN 2

nmean = nanmean(m)

nmean =

 3.5000 3.0000 4.0000

See Also nanmin, nanmax, nanmedian, nanstd, nansum
2-137

nanmedian
2nanmedianPurpose Median ignoring NaNs

Syntax y = nanmedian(X)

Description nanmedian(X) the median treating NaNs as missing values.

For vectors, nanmedian(x) is the median of the non-NaN elements of x. For
matrices, nanmedian(X) is a row vector containing the median of the non-NaN
elements in each column of X.

Example m = magic(4);
m([1 6 9 11]) = [NaN NaN NaN NaN]

m =

 NaN 2 NaN 13
 5 NaN 10 8
 9 7 NaN 12
 4 14 15 1

nmedian = nanmedian(m)

nmedian =

 5.0000 7.0000 12.5000 10.0000

See Also nanmin, nanmax, nanmean, nanstd, nansum
2-138

nanmin
2nanminPurpose Minimum ignoring NaNs

Syntax m = nanmin(a)

[m,ndx] = nanmin(a)

m = nanmin(a,b)

Description m = nanmin(a) returns the minimum with NaNs treated as missing. For vectors,
nanmin(a) is the smallest non-NaN element in a. For matrices, nanmin(A) is a
row vector containing the minimum non-NaN element from each column.

[m,ndx] = nanmin(a) also returns the indices of the minimum values in vector
ndx.

m = nanmin(a,b) returns the smaller of a or b, which must match in size.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

 NaN 1 6
 3 5 NaN
 4 NaN 2

[nmin,minidx] = nanmin(m)

nmin =

 3 1 2

minidx =

 2 1 3

See Also nanmax, nanmean, nanmedian, nanstd, nansum
2-139

nanstd
2nanstdPurpose Standard deviation ignoring NaNs.

Syntax y = nanstd(X)

Description nanstd(X) the standard deviation treating NaNs as missing values.

For vectors, nanstd(x) is the standard deviation of the non-NaN elements of x.
For matrices, nanstd(X) is a row vector containing the standard deviations of
the non-NaN elements in each column of X.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

 NaN 1 6
 3 5 NaN
 4 NaN 2

nstd = nanstd(m)

nstd =

 0.7071 2.8284 2.8284

See Also nanmax, nanmin, nanmean, nanmedian, nansum
2-140

nansum
2nansumPurpose Sum ignoring NaNs.

Syntax y = nansum(X)

Description nansum(X) the sum treating NaNs as missing values.

For vectors, nansum(x) is the sum of the non-NaN elements of x. For matrices,
nansum(X) is a row vector containing the sum of the non-NaN elements in each
column of X.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]

m =

 NaN 1 6
 3 5 NaN
 4 NaN 2

nsum = nansum(m)

nsum =

 7 6 8

See Also nanmax, nanmin, nanmean, nanmedian, nanstd
2-141

nbincdf
2nbincdfPurpose Negative binomial cumulative distribution function.

Syntax Y = nbincdf(X,R,P)

Description Y = nbincdf(X,R,P) returns the negative binomial cumulative
distributionfunction with parameters R and P at the values in X.

The size of Y is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

The negative binomial cdf is:

The motivation for the negative binomial is performing successive trials each
having a constant probability, P, of success. What you want to find out is how
many extra trials you must do to observe a given number, R, of successes.

Example x = (0:15);
p = nbincdf(x,3,0.5);
stairs(x,p)

See Also nbininv, nbinpdf, nbinrnd, nbinstat

y F x r p,() r i 1–+
i 

 

i 0=

x

∑ prqiI 0 1 …, ,() i()= =

0 5 10 15
0

0.2

0.4

0.6

0.8

1

2-142

nbininv
2nbininvPurpose Inverse of the negative binomial cumulative distribution function (cdf).

Syntax X = nbininv(Y,R,P)

Description nbininv(Y,R,P) returns the inverse of the negative binomial cdf with
parameters R and P. Since the binomial distribution is discrete, nbininv
returns the least integer X such that the negative binomial cdf evaluated at X,
equals or exceeds Y.

The size of X is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

The negative binomial models consecutive trials each having a constant
probability, P, of success. The parameter, R, is the number of successes required
before stopping.

Example How many times would you need to flip a fair coin to have a 99% probability of
having observed 10 heads?

flips = nbininv(0.99,10,0.5) + 10

flips =

 33

Note that you have to flip at least 10 times to get 10 heads. That is why the
second term on the right side of the equals sign is a 10.

See Also nbincdf, nbinpdf, nbinrnd, nbinstat
2-143

nbinpdf
2nbinpdfPurpose Negative binomial probability density function.

Syntax Y = nbinpdf(X,R,P)

Description nbinpdf(X,R,P) returns the negative binomial probability density function
with parameters R and P at the values in X.

Note that the density function is zero unless X is an integer.

The size of Y is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

The negative binomial pdf is:

The negative binomial models consecutive trials each having a constant
probability, P, of success. The parameter, R, is the number of successes required
before stopping.

Example x = (0:10);
y = nbinpdf(x,3,0.5);
plot(x,y,'+')
set(gca,'Xlim',[–0.5,10.5])

See Also nbincdf, nbininv, nbinrnd, nbinstat, pdf

y f x r p,() r x 1–+
x 

  prqxI 0 1 …, ,() x()= =

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2
2-144

nbinrnd
2nbinrndPurpose Random matrices from a negative binomial distribution.

Syntax RND = nbinrnd(R,P)

RND = nbinrnd(R,P,m)

RND = nbinrnd(R,P,m,n)

Description RND = nbinrnd(R,P) is a matrix of random numbers chosen from a negative
binomial distribution with parameters R and P. The size of RND is the common
size of R and P if both are matrices. If either parameter is a scalar, the size of
RND is the size of the other parameter.

RND = nbinrnd(R,P,m) generates random numbers with parameters R and P.
m is a 1-by-2 vector that contains the row and column dimensions of RND.

RND = nbinrnd(R,P,m,n) generates random numbers with parameters R and
P. The scalars m and n are the row and column dimensions of RND.

The negative binomial models consecutive trials each having a constant
probability, P, of success. The parameter, R, is the number of successes required
before stopping.

Example Suppose you want to simulate a process that has a defect probability of 0.01.
How many units might Quality Assurance inspect before finding three
defective items?

r = nbinrnd(3,0.01,1,6) + 3

r =

 496 142 420 396 851 178

See Also nbincdf, nbininv, nbinpdf, nbinstat
2-145

nbinstat
2nbinstatPurpose Mean and variance of the negative binomial distribution.

Syntax [M,V] = nbinstat(R,P)

Description [M,V] = nbinstat(R,P) returns the mean and variance of the negative
binomial distibution with parameters R and P.

For the negative binomial distribution:

• The mean is

• The variance is

where q = 1 – p.

Example p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)

M =

 9.0000 18.0000 27.0000 36.0000 45.0000
 2.3333 4.6667 7.0000 9.3333 11.6667
 1.0000 2.0000 3.0000 4.0000 5.0000
 0.4286 0.8571 1.2857 1.7143 2.1429
 0.1111 0.2222 0.3333 0.4444 0.5556

V =

 90.0000 180.0000 270.0000 360.0000 450.0000
 7.7778 15.5556 23.3333 31.1111 38.8889
 2.0000 4.0000 6.0000 8.0000 10.0000
 0.6122 1.2245 1.8367 2.4490 3.0612
 0.1235 0.2469 0.3704 0.4938 0.6173

See Also nbincdf, nbininv, nbinpdf, nbinrnd

rq
p------

rq

p2------
2-146

ncfcdf
2ncfcdfPurpose Noncentral F cumulative distribution function (cdf).

Syntax P = ncfcdf(X,NU1,NU2,DELTA)

Description P = ncfcdf(X,NU1,NU2,DELTA) returns the noncentral F cdf with numerator
degrees of freedom (df), NU1, denominator df, NU2, and positive noncentrality
parameter, DELTA, at the values in X.

The size of P is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

The noncentral F cdf is:

where I(x|a,b) is the incomplete beta function with parameters a and b.

Example Compare the noncentral F cdf with δ = 10 to the F cdf with the same number of
numerator and denominator degrees of freedom (5 and 20 respectively).

x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'– –',x,p1,'–')

References Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 189–200.

F x ν1 ν2 δ, ,()

1
2---δ 

 j

j!-------------e

δ
2---–

 
 
 
 
 

I
ν1 x⋅

ν2 ν+ 1 x⋅-------------------------
ν1
2------ j+

ν2
2------,

 
 
 

j 0=

∞

∑=

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

2-147

ncfinv
2ncfinvPurpose Inverse of the noncentral F cumulative distribution function (cdf).

Syntax X = ncfinv(P,NU1,NU2,DELTA)

Description X = ncfinv(P,NU1,NU2,DELTA) returns the inverse of the noncentral F cdf with
numerator degrees of freedom (df), NU1, denominator df, NU2, and positive
noncentrality parameter, DELTA, for the probabilities, P.

The size of X is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Example One hypothesis test for comparing two sample variances is to take their ratio
and compare it to an F distribution. If the numerator and denominator degrees
of freedom are 5 and 20 respectively then you reject the hypothesis that the
first variance is equal to the second variance if their ratio is less than below:

critical = finv(0.95,5,20)

critical =

 2.7109

Suppose the truth is that the first variance is twice as big as the second
variance. How likely is it that you would detect this difference?

prob = 1 – ncfcdf(critical,5,20,2)

prob =

 0.1297

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 102–105.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 189–200.

See Also icdf, ncfcdf, ncfpdf, ncfrnd, ncfstat
2-148

ncfpdf
2ncfpdfPurpose Noncentral F probability density function.

Syntax Y = ncfpdf(X,NU1,NU2,DELTA)

Description Y = ncfpdf(X,NU1,NU2,DELTA) returns the noncentral F pdf with with
numerator degrees of freedom (df), NU1, denominator df, NU2, and positive
noncentrality parameter, DELTA, at the values in X.

The size of Y is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

The F distribution is a special case of the noncentral F where δ = 0. As δ
increases, the distribution flattens like the plot in the example.

Example Compare the noncentral F pdf with δ = 10 to the F pdf with the same number
of numerator and denominator degrees of freedom (5 and 20 respectively).

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'– –',x,p1,'–')

References Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 189–200.

See Also ncfcdf, ncfinv, ncfrnd, ncfstat

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8
2-149

ncfrnd
2ncfrndPurpose Random matrices from the noncentral F distribution.

Syntax R = ncfrnd(NU1,NU2,DELTA)

R = ncfrnd(NU1,NU2,DELTA,m)

R = ncfrnd(NU1,NU2,DELTA,m,n)

Description R = ncfrnd(NU1,NU2,DELTA) returns a matrix of random numbers chosen from
the noncentral F distribution with parameters NU1, NU2 and DELTA. The size of
R is the common size of NU1, NU2 and DELTA if all are matrices. If any parameter
is a scalar, the size of R is the size of the other parameters.

R = ncfrnd(NU1,NU2,DELTA,m) returns a matrix of random numbers with
parameters NU1, NU2 and DELTA. m is a 1-by-2 vector that contains the row and
column dimensions of R.

R = ncfrnd(NU1,NU2,DELTA,m,n) generates random numbers with
parameters NU1, NU2 and DELTA. The scalars m and n are the row and column
dimensions of R.

Example Compute 6 random numbers from a noncentral F distribution with 10
numerator degrees of freedom, 100 denominator degrees of freedom and a
noncentrality parameter, δ, of 4.0. Compare this to the F distribution with the
same degrees of freedom.

r = ncfrnd(10,100,4,1,6)
r =

 2.5995 0.8824 0.8220 1.4485 1.4415 1.4864

r1 = frnd(10,100,1,6)
r1 =

 0.9826 0.5911 1.0967 0.9681 2.0096 0.6598

References Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 189–200.

See Also ncfcdf, ncfinv, ncfpdf, ncfstat
2-150

ncfstat
2ncfstatPurpose Mean and variance of the noncentral F distribution.

Syntax [M,V] = ncfstat(NU1,NU2,DELTA)

Description [M,V] = ncfstat(NU1,NU2,DELTA) returns the mean and variance of the
noncentral F pdf with NU1 and NU2 degrees of freedom and noncentrality
parameter, DELTA.

• The mean is

where ν2 > 2.

• The variance is

where ν2 > 4.

Example [m,v]= ncfstat(10,100,4)

m =

 1.4286

v =

 3.9200

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 73–74.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 189–200.

See Also ncfcdf, ncfinv, ncfpdf, ncfrnd

ν2 δ ν+ 1()
ν1 ν2 2–()--------------------------

2
ν2
ν1
------ 

 
2 δ ν+ 1()2 2δ ν+ 1() ν2 2–()+

ν2 2–()2 ν2 4–()
--
2-151

nctcdf
2nctcdfPurpose Noncentral T cumulative distribution function.

Syntax P = nctcdf(X,NU,DELTA)

Description P = nctcdf(X,NU,DELTA) returns the noncentral T cdf with NU degrees of
freedom and noncentrality parameter, DELTA, at the values in X.

The size of P is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Example Compare the noncentral T cdf with DELTA = 1 to the T cdf with the same number
of degrees of freedom (10).

x = (–5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'– –',x,p1,'–')

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 147–148.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 201–219.

See Also cdf, nctcdf, nctinv, nctpdf, nctrnd, nctstat

-5 0 5
0

0.2

0.4

0.6

0.8

1

2-152

nctinv
2nctinvPurpose Inverse of the noncentral T cumulative distribution.

Syntax X = nctinv(P,NU,DELTA)

Description X = nctinv(P,NU,DELTA) returns the inverse of the noncentral T cdf with NU
degrees of freedom and noncentrality parameter, DELTA, for the probabilities, P.

The size of X is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Example x = nctinv([.1 .2],10,1)

x =

 –0.2914 0.1618

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 147–148.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 201–219.

See Also icdf, nctcdf, nctpdf, nctrnd, nctstat
2-153

nctpdf
2nctpdfPurpose Noncentral T probability density function (pdf).

Syntax Y = nctpdf(X,V,DELTA)

Description Y = nctpdf(X,V,DELTA) returns the noncentral T pdf with V degrees of freedom
and noncentrality parameter, DELTA, at the values in X.

The size of Y is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Example Compare the noncentral T pdf with DELTA = 1 to the T pdf with the same
number of degrees of freedom (10).

x = (–5:0.1:5)';
p1 = nctpdf(x,10,1);
p = tpdf(x,10);
plot(x,p,'– –',x,p1,'–')

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 147–148.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 201–219.

See Also nctcdf, nctinv, nctrnd, nctstat, pdf

-5 0 5
0

0.1

0.2

0.3

0.4
2-154

nctrnd
2nctrndPurpose Random matrices from noncentral T distribution.

Syntax R = nctrnd(V,DELTA)

R = nctrnd(V,DELTA,m)

R = nctrnd(V,DELTA,m,n)

Description R = nctrnd(V,DELTA) returns a matrix of random numbers chosen from the
noncentral T distribution with parameters V and DELTA. The size of R is the
common size of V and DELTA if both are matrices. If either parameter is a scalar,
the size of R is the size of the other parameter.

R = nctrnd(V,DELTA,m) returns a matrix of random numbers with parameters
V and DELTA. m is a 1-by-2 vector that contains the row and column dimensions
of R.

R = nctrnd(V,DELTA,m,n) generates random numbers with parameters V and
DELTA. The scalars m and n are the row and column dimensions of R.

Example nctrnd(10,1,5,1)

ans =

 1.6576
 1.0617
 1.4491
 0.2930
 3.6297

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 147–148.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 201–219.

See Also nctcdf, nctinv, nctpdf, nctstat
2-155

nctstat
2nctstatPurpose Mean and variance for the noncentral t distribution.

Syntax [M,V] = nctstat(NU,DELTA)

Description [M,V] = nctstat(NU,DELTA) returns the mean and variance of the noncentral
t pdf with NU degrees of freedom and noncentrality parameter, DELTA.

• The mean is

where ν > 1.

• The variance is

where ν > 2.

Example [m,v] = nctstat(10,1)

m =

 1.0837

v =

 1.3255

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 147–148.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 201–219.

See Also nctcdf, nctinv, nctpdf, nctrnd

δ ν 2⁄()1 2⁄ Γ ν 1–() 2⁄()
Γ ν 2⁄()---

ν
ν 2–()----------------- 1 δ2

+() ν
2---– δ2 Γ ν 1–() 2⁄()

Γ ν 2⁄()---------------------------------
2

2-156

ncx2cdf
2ncx2cdfPurpose Noncentral chi-square cumulative distribution function (cdf).

Syntax P = ncx2cdf(X,V,DELTA)

Description ncx2cdf(X,V,DELTA) returns the noncentral chi-square cdf with V degrees of
freedom and positive noncentrality parameter, DELTA, at the values in X.

The size of P is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh,
Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is:

Example x = (0:0.1:10)';
p1 = ncx2cdf(x,4,2);
p = chi2cdf(x,4);
plot(x,p,'– –',x,p1,'–')

References Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 130–148.

See Also cdf, ncx2inv, ncx2pdf, ncx2rnd, ncx2stat

F x ν δ,()

1
2---δ 

 j

j!-------------e

δ
2---–

 
 
 
 
 

Pr χ
ν 2j+

2 x≤[]

j 0=

∞

∑=

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

2-157

ncx2inv
2ncx2invPurpose Inverse of the noncentral chi-square cdf.

Syntax X = ncx2inv(P,V,DELTA)

Description X = ncx2inv(P,V,DELTA) returns the inverse of the noncentral chi-square cdf
with parameters V and DELTA, at the probabilities in P.

The size of X is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Algorithm ncx2inv uses Newton's method to converge to the solution.

Example ncx2inv([0.01 0.05 0.1],4,2)

ans =

 0.4858 1.1498 1.7066

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 50–52.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 130–148.

See Also ncx2cdf, ncx2pdf, ncx2rnd, ncx2stat
2-158

ncx2pdf
2ncx2pdfPurpose Noncentral chi-square probability density function (pdf).

Syntax Y = ncx2pdf(X,V,DELTA)

Description Y = ncx2pdf(X,V,DELTA) returns the noncentral chi-square pdf with v degrees
of freedom and positive noncentrality parameter, DELTA, at the values in X.

The size of Y is the common size of the input arguments. A scalar input
functions as a constant matrix of the same size as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh,
Rayleigh-Rice, or Rice distribution.

Example As the noncentrality parameter, δ, increases, the distribution flattens as in the
plot.

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'– –',x,p1,'–')

References Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 130–148.

See Also ncx2cdf, ncx2inv, ncx2rnd, ncx2stat

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2
2-159

ncx2rnd
2ncx2rndPurpose Random matrices from the noncentral chi-square distribution.

Syntax R = ncx2rnd(V,DELTA)

R = ncx2rnd(V,DELTA,m)

R = ncx2rnd(V,DELTA,m,n)

Description R = ncx2rnd(V,DELTA) returns a matrix of random numbers chosen from the
non-central chisquare distribution with parameters V and DELTA. The size of R
is the common size of V and DELTA if both are matrices. If either parameter is a
scalar, the size of R is the size of the other parameter.

R = ncx2rnd(V,DELTA,m) returns a matrix of random numbers with
parameters V and DELTA. m is a 1-by-2 vector that contains the row and column
dimensions of R.

R = ncx2rnd(V,DELTA,m,n) generates random numbers with parameters V and
DELTA. The scalars m and n are the row and column dimensions of R.

Example ncx2rnd(4,2,6,3)

ans =

 6.8552 5.9650 11.2961
 5.2631 4.2640 5.9495
 9.1939 6.7162 3.8315
 10.3100 4.4828 7.1653
 2.1142 1.9826 4.6400
 3.8852 5.3999 0.9282

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 50–52.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 130–148.

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2stat
2-160

ncx2stat
2ncx2statPurpose Mean and variance for the noncentral chi-square distribution.

Syntax [M,V] = ncx2stat(NU,DELTA)

Description [M,V] = ncx2stat(NU,DELTA) returns the mean and variance of the noncentral
chi-square pdf with NU degrees of freedom and noncentrality parameter, DELTA.

For the noncentral chi-square distribution:

• The mean is .

• The variance is .

Example [m,v] = ncx2stat(4,2)

m =

 6

v =

 16

References Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, John Wiley and Sons, 1993. p. 50–52.

Johnson, N., and S. Kotz, Distributions in Statistics: Continuous Univariate
Distributions-2, John Wiley and Sons, 1970. pp. 130–148.

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2rnd

ν δ+

2 ν 2δ+()
2-161

nlinfit
2nlinfitPurpose Nonlinear least-squares data fitting by the Gauss-Newton method.

Syntax [beta,r,J] = nlinfit(X,y,'model',beta0)

Description beta = nlinfit(X,y,'model',beta0) returns the coefficients of the nonlinear
function described in 'model'.

'model' is a user-supplied function having the form: . It returns the
predicted values of y given initial parameter estimates, β, and the independent
variable, X.

The matrix, X, has one column per independent variable. The response, y, is a
column vector with the same number of rows as X.

[beta,r,J] = nlinfit(X,y,'model',beta0) returns the fitted coefficients,
beta, the residuals, r, and the Jacobian, J, for use with nlintool to produce
error estimates on predictions.

Example load reaction
betafit = nlinfit(reactants,rate,'hougen',beta)

betafit =
 1.2526
 0.0628
 0.0400
 0.1124
 1.1914

See Also nlintool

ŷ f β X,()=
2-162

nlintool
2nlintoolPurpose Fits a nonlinear equation to data and displays an interactive graph.

Syntax nlintool(x,y,'model',beta0)

nlintool(x,y,'model',beta0,alpha)

nlintool(x,y,'model',beta0,alpha,'xname','yname')

Description nlintool(x,y,'model',beta0) is a prediction plot that provides a nonlinear
curve fit to (x,y) data. It plots a 95% global confidence interval for predictions
as two red curves. beta0 is a vector containing initial guesses for the
parameters.

nlintool(x,y,'model',beta0,alpha) plots a 100(1 – alpha) percent
confidence interval for predictions.

nlintool displays a “vector” of plots, one for each column of the matrix of
inputs, x. The response variable, y, is a column vector that matches the number
of rows in x.

The default value for alpha is 0.05, which produces 95% confidence intervals.

nlintool(x,y,'model',beta0,alpha,'xname','yname') labels the plot using
the string matrix, 'xname' for the X variables and the string 'yname' for the Y
variable.

You can drag the dotted white reference line and watch the predicted values
update simultaneously. Alternatively, you can get a specific prediction by
typing the value for X into an editable text field. Use the pop-up menu labeled
Export to move specified variables to the base workspace.

Example See the section “Nonlinear Regression Models” in Chapter 1.

See Also nlinfit, rstool
2-163

nlparci
2nlparciPurpose Confidence intervals on estimates of parameters in nonlinear models.

Syntax ci = nlparci(beta,r,J)

Description nlparci(beta,r,J) returns the 95% confidence interval ci on the nonlinear
least squares parameter estimates beta, given the residuals, r, and the
Jacobian matrix ,J, at the solution. The confidence interval calculation is valid
for systems where the number of rows of J exceeds the length of beta.

nlparci uses the outputs of nlinfit for its inputs.

Example Continuing the example from nlinfit:

load reaction
[beta,resids,J] = nlinfit(reactants,rate,'hougen',beta);
ci = nlparci(beta,resids,J)

ci =

 –1.0798 3.3445
 –0.0524 0.1689
 –0.0437 0.1145
 –0.0891 0.2941
 –1.1719 3.7321

See Also nlinfit, nlintool, nlpredci
2-164

nlpredci
2nlpredciPurpose Confidence intervals on predictions of nonlinear models.

Syntax ypred = nlpredci('model',inputs,beta,r,J)

[ypred,delta] = nlpredci('model',inputs,beta,r,J)

Description ypred = nlpredci('model',inputs,beta,r,J) returns the predicted
responses,ypred, given the fitted parameters, beta, residuals, r, and the
Jacobian matrix, J. inputs is a matrix of values of the independent variables
in the nonlinear function.

[ypred,delta] = nlpredci('model',inputs,beta,r,J) also returns 95%
confidence intervals, delta, on the nonlinear least squares predictions, pred.
The confidence interval calculation is valid for systems where the length of r
exceeds the length of beta and J is of full column rank.

nlpredci uses the outputs of nlinfit for its inputs.

Example Continuing the example from nlinfit:

load reaction
[beta,resids,J]=nlinfit(reactants,rate,'hougen',beta);
ci = nlpredci('hougen',reactants,beta,resids,J)

ci =

 8.2937
 3.8584
 4.7950
 –0.0725
 2.5687
 14.2227
 2.4393
 3.9360
 12.9440
 8.2670
 –0.1437
 11.3484
 3.3145

See Also nlinfit, nlintool, nlparci
2-165

normcdf
2normcdfPurpose Normal cumulative distribution function (cdf).

Syntax P = normcdf(X,MU,SIGMA)

Description normcdf(X,MU,SIGMA) computes the normal cdf with parameters MU and SIGMA
at the values in X. The arguments X, MU and SIGMA must all be the same size
except that scalar arguments function as constant matrices of the common size
of the other arguments.

The parameter SIGMA must be positive.

The normal cdf is:

The result, p, is the probability that a single observation from a normal
distribution with parameters µ and σ will fall in the interval (–∞ x].

The standard normal distribution has µ = 0 and σ = 1.

Examples What is the probability that an observation from a standard normal
distribution will fall on the interval [–1 1]?

p = normcdf([–1 1]);
p(2) – p(1)

ans =

 0.6827

More generally, about 68% of the observations from a normal distribution fall
within one standard deviation,σ, of the mean, µ.

p F x µ σ,()
1

σ 2π
--------------- e

t µ–()– 2

2σ2---------------------

td∞–

x

∫= =
2-166

normfit
2normfitPurpose Parameter estimates and confidence intervals for normal data.

Syntax [muhat,sigmahat,muci,sigmaci] = normfit(X)

[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)

Description [muhat,sigmahat,muci,sigmaci] = normfit(X) returns estimates, muhat and
sigmahat, of the parameters, µ and σ, of the normal distribution given the
matrix of data, X. muci and sigmaci are 95% confidence intervals. muci and
sigmaci have two rows and as many columns as the data matrix, X. The top row
is the lower bound of the confidence interval and the bottom row is the upper
bound.

[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha) gives estimates and
100(1–alpha) percent confidence intervals. For example, alpha = 0.01 gives
99% confidence intervals.

Example In this example the data is a two-column random normal matrix. Both columns
have µ = 10 and σ = 2. Note that the confidence intervals below contain the
“true values.”

r = normrnd(10,2,100,2);
[mu,sigma,muci,sigmaci] = normfit(r)

mu =
 10.1455 10.0527

sigma =
 1.9072 2.1256

muci =
 9.7652 9.6288
 10.5258 10.4766

sigmaci =
 1.6745 1.8663
 2.2155 2.4693

See Also betafit, binofit, expfit, gamfit, poissfit, unifit, weibfit
2-167

norminv
2norminvPurpose Inverse of the normal cumulative distribution function (cdf).

Syntax X = norminv(P,MU,SIGMA)

Description norminv(P,MU,SIGMA) computes the inverse of the normal cdf with parameters
MU and SIGMA at the values in P. The arguments P, MU, and SIGMA must all be
the same size except that scalar arguments function as constant matrices of the
common size of the other arguments.

The parameter SIGMA must be positive and P must lie on [0 1].

We define the normal inverse function in terms of the normal cdf.

The result, x, is the solution of the integral equation above with the parameters
µ and σ where you supply the desired probability, p.

Examples Find an interval that contains 95% of the values from a standard normal
distribution.

x = norminv([0.025 0.975],0,1)

x =

 –1.9600 1.9600

Note the interval x is not the only such interval, but it is the shortest.

xl = norminv([0.01 0.96],0,1)

xl =

 –2.3263 1.7507

The interval xl also contains 95% of the probability, but it is longer than x.

x F 1– p µ σ,() x:F x µ σ,() p={ }= =

where p F x µ σ,()
1

σ 2π
--------------- e

t µ–()– 2

2σ2---------------------

td∞–

x

∫= =
2-168

normpdf
2normpdfPurpose Normal probability density function (pdf).

Syntax Y = normpdf(X,MU,SIGMA)

Description normpdf(X,MU,SIGMA) computes the normal pdf with parameters mu and SIGMA
at the values in X. The arguments X, MU and SIGMA must all be the same size
except that scalar arguments function as constant matrices of the common size
of the other arguments.

The parameter SIGMA must be positive.

The normal pdf is:

The likelihood function is the pdf viewed as a function of the parameters.
Maximum likelihood estimators (MLEs) are the values of the parameters that
maximize the likelihood function for a fixed value of x.

The standard normal distribution has µ = 0 and σ = 1.

If x is standard normal, then xσ + µ is also normal with mean µ and standard
deviation σ. Conversely, if y is normal with mean µ and standard deviation σ,
then x = (y –µ)/σ is standard normal.

Examples mu = [0:0.1:2];
[y i] = max(normpdf(1.5,mu,1));
MLE = mu(i)

MLE =

 1.5000

y f x µ σ,()
1

σ 2π
---------------e

x µ–()– 2

2σ2----------------------

= =
2-169

normplot
2normplotPurpose Normal probability plot for graphical normality testing.

Syntax normplot(X)

h = normplot(X)

Description normplot(X) displays a normal probability plot of the data in X. For matrix X,
normplot displays a line for each column of X.

The plot has the sample data displayed with the plot symbol '+'. Superimposed
on the plot is a line joining the first and third quartiles of each column of x. (A
robust linear fit of the sample order statistics.) This line is extrapolated out to
the ends of the sample to help evaluate the linearity of the data.

If the data does come from a normal distribution, the plot will appear linear.
Other probability density functions will introduce curvature in the plot.

h = normplot(X) returns a handle to the plotted lines.

Examples Generate a normal sample and a normal probability plot of the data.

x = normrnd(0,1,50,1);
h = normplot(x);

The plot is linear, indicating that you can model the sample by a normal
distribution.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

Data

P
ro

ba
bi

lit
y

Normal Probability Plot
2-170

normrnd
2normrndPurpose Random numbers from the normal distribution.

Syntax R = normrnd(MU,SIGMA)

R = normrnd(MU,SIGMA,m)

R = normrnd(MU,SIGMA,m,n)

Description R = normrnd(MU,SIGMA) generates normal random numbers with mean, MU,
and standard deviation, SIGMA . The size of R is the common size of MU and
SIGMA if both are matrices. If either parameter is a scalar, the size of R is the
size of the other parameter.

R = normrnd(MU,SIGMA,m) generates normal random numbers with
parameters MU and SIGMA. m is a 1-by-2 vector that contains the row and column
dimensions of R.

R = normrnd(MU,SIGMA,m,n) generates normal random numbers with
parameters MU and SIGMA. The scalars m and n are the row and column
dimensions of R.

Examples n1 = normrnd(1:6,1./(1:6))

n1 =

 2.1650 2.3134 3.0250 4.0879 4.8607 6.2827

n2 = normrnd(0,1,[1 5])

n2 =

 0.0591 1.7971 0.2641 0.8717 -1.4462

n3 = normrnd([1 2 3;4 5 6],0.1,2,3)

n3 =

 0.9299 1.9361 2.9640
 4.1246 5.0577 5.9864
2-171

normspec
2normspecPurpose Plot normal density between specification limits.

Syntax p = normspec(specs,mu,sigma)

[p,h] = normspec(specs,mu,sigma)

Description p = normspec(specs,mu,sigma) plots the normal density between a lower and
upper limit defined by the two elements of the vector, specs. mu and sigma are
the parameters of the plotted normal distribution.

[p,h] = normspec(specs,mu,sigma) returns the probability, p, of a sample
falling between the lower and upper limits. h is a handle to the line objects.

If specs(1) is –Inf, there is no lower limit, and similarly if specs(2) = Inf,
there is no upper limit.

Example Suppose a cereal manufacturer produces 10 ounce boxes of corn flakes.
Variability in the process of filling each box with flakes causes a 1.25 ounce
standard deviation in the true weight of the cereal in each box. The average box
of cereal has 11.5 ounces of flakes. What percentage of boxes will have less than
10 ounces?

normspec([10 Inf],11.5,1.25)

See Also capaplot, disttool, histfit, normpdf

6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

Critical Value

D
en

si
ty

Probability Between Limits is 0.8849
2-172

normstat
2normstatPurpose Mean and variance for the normal distribution.

Syntax [M,V] = normstat(MU,SIGMA)

Description For the normal distribution:

• The mean is µ.

• The variance is σ2.

Examples n = 1:5;
[m,v] = normstat(n'∗n,n'*n)
[m,v] = normstat(n'*n,n'*n)

m =

 1 2 3 4 5
 2 4 6 8 10
 3 6 9 12 15
 4 8 12 16 20
 5 10 15 20 25

v =

 1 4 9 16 25
 4 16 36 64 100
 9 36 81 144 225
 16 64 144 256 400
 25 100 225 400 625
2-173

pareto
2paretoPurpose Pareto charts for Statistical Process Control.

Syntax pareto(y)

pareto(y,'names')

h = pareto(...)

Description pareto(y,names) displays a Pareto chart where the values in the vector y are
drawn as bars in descending order. Each bar is labeled with the associated
value in the string matrix names. pareto(y) labels each bar with the index of
the corresponding element in y.

The line above the bars shows the cumulative percentage.

pareto(y,'names') labels each bar with the row of the string matrix, 'names',
that corresponds to the plotted element of y.

h = pareto(...) returns a combination of patch and line handles.

Example Create a Pareto chart from data measuring the number of manufactured parts
rejected for various types of defects.

defects = ['pits ';'cracks';'holes ';'dents '];
quantity = [5 3 19 25];
pareto(quantity,defects)

See Also bar, capaplot, ewmaplot, hist, histfit, schart, xbarplot

dents holes pits cracks
0

20

40

60
2-174

pcacov
2pcacovPurpose Principal Components Analysis (PCA) using the covariance matrix.

Syntax pc = pcacov(X)

[pc,latent,explained] = pcacov(X)

Description [pc,latent,explained] = pcacov(X) takes the covariance matrix X and
returns the principal components in pc, the eigenvalues of the covariance
matrix of X in latent, and the percentage of the total variance in the
observations explained by each eigenvector in explained.

Example load hald
covx = cov(ingredients);
[pc,variances,explained] = pcacov(covx)

pc =

 0.0678 –0.6460 0.5673 –0.5062
 0.6785 –0.0200 –0.5440 –0.4933
 –0.0290 0.7553 0.4036 –0.5156
 –0.7309 –0.1085 –0.4684 –0.4844

variances =

 517.7969
 67.4964
 12.4054
 0.2372

explained =

 86.5974
 11.2882
 2.0747
 0.0397

References Jackson, J. E., A User's Guide to Principal Components, John Wiley and Sons,
Inc. 1991. pp. 1–25.

See Also barttest, pcares, princomp
2-175

pcares
2pcaresPurpose Residuals from a Principal Components Analysis.

Syntax residuals = pcares(X,ndim)

Description pcares(X,ndim) returns the residuals obtained by retaining ndim principal
components of X. Note that ndim is a scalar and must be less than the number
of columns in X. Use the data matrix, not the covariance matrix, with this
function.

Example This example shows the drop in the residuals from the first row of the Hald
data as the number of component dimensions increase from one to three.

load hald
r1 = pcares(ingredients,1);
r2 = pcares(ingredients,2);
r3 = pcares(ingredients,3);
r11 = r1(1,:)

r11 =

 2.0350 2.8304 –6.8378 3.0879

r21 = r2(1,:)

r21 =

 –2.4037 2.6930 –1.6482 2.3425

r31 = r3(1,:)

r31 =

 0.2008 0.1957 0.2045 0.1921

Reference Jackson, J. E., A User's Guide to Principal Components, John Wiley and Sons,
Inc. 1991. pp. 1–25.

See Also barttest, pcacov, princomp
2-176

pdf
2pdfPurpose Probability density function (pdf) for a specified distribution.

Syntax Y = pdf('name',X,A1,A2,A3)

Description pdf('name',X,A1,A2,A3) returns a matrix of densities. 'name' is a string
containing the name of the distribution. X is a matrix of values, and A1, A2, and
A3 are matrices of distribution parameters. Depending on the distribution,
some of the parameters may not be necessary.

The arguments X, A1, A2, and A3 must all be the same size except that scalar
arguments function as constant matrices of the common size of the other
arguments.

pdf is a utility routine allowing access to all the pdfs in the Statistics Toolbox
using the name of the distribution as a parameter.

Examples p = pdf('Normal',–2:2,0,1)

p =

 0.0540 0.2420 0.3989 0.2420 0.0540

p = pdf('Poisson',0:4,1:5)

p =

 0.3679 0.2707 0.2240 0.1954 0.1755
2-177

pdist
2pdistPurpose Pairwise distance between observations.

Syntax Y = pdist(X)
Y = pdist(X,’metric’)
Y = pdist(X,’minkowski’,p)

Description Y = pdist(X) computes the Euclidean distance between pairs of objects in the
data matrix X. X is an m by n matrix, treated as m vectors of size n. For a
dataset made up of m objects, there are pairs.

The output, Y, is a vector of length , containing the distance
information. The distances are arranged in the order (1,2), (1,3),..., (1,m),
(2,3),..., (2,m), ..., ...,(m-1, m). Y is also commonly known as a similarity matrix
or dissimilarity matrix.

To save space and computation time, Y is formatted as a vector. However, you
can convert this vector into a square matrix using the squareform function so
that element (i,j) in the matrix corresponds to the distance between objects i
and j in the original dataset.

Y = pdist(X,'metric') computes the distance between objects in the data
matrix, X, using the method specified by ‘metric’. ‘metric’can be any of the
following character strings that identify ways to compute the distance.

Y = pdist(X,’minkowski’, p) computes the distance between objects in the
data matrix, X, using the Minkowski metric. p is the exponent used in the
Minkowski computation which, by default, is 2.

String Meaning

‘Euclid’ Euclidean distance (default)

‘SEuclid’ Standardized Euclidean distance

‘Mahal’ Mahalanobis distance

‘CityBlock’ City Block metric

‘Minkowski’ Minkowski metric

m 1–() m 2⁄⋅

m 1–() m 2⁄⋅
2-178

pdist
Mathematical Definitions of Methods . Given an m-by-n data matrix X, which is
treated as m (1-by-n) row vectors x1, x2,..., xm, the various distances between
the vector xr and xs are defined as follows:

• Euclidean distance:

• Standardized Euclidean distance:

where D is the diagonal matrix with diagonal elements given by , which
denotes the variance of the variable Xj over the m objects.

• Mahalanobis distance:

where V is the sample covariance matrix.

• City Block metric:

• Minkowski metric:

Notice that when , it is the City Block case, and when , it is the
Euclidean case.

drs
2 xr xs–() xr xs–()'=

drs
2 xr xs–()D 1– xr xs–()'=

vj
2

drs
2 xr xs–()'V 1– xr xs–()=

drs xrj xsj–
j 1=

n

∑=

drs xrj xsj–
p

j 1=

n

∑
 
 
 
 
 

1 p⁄
=

p 1= p 2=
2-179

pdist
Examples X = [1 2; 1 3; 2 2; 3 1]
X =
 1 2
 1 3
 2 2
 3 1

Y = pdist(X,'mahal')

Y =
 2.3452 2.0000 2.3452 1.2247 2.4495 1.2247

Y = pdist(X)

Y =
 1.0000 1.0000 2.2361 1.4142 2.8284 1.4142

squareform(Y)
ans =
 0 1.0000 1.0000 2.2361
 1.0000 0 1.4142 2.8284
 1.0000 1.4142 0 1.4142
 2.2361 2.8284 1.4142 0

See Also cluster, clusterdata, cophenet, dendrogram, inconsistent, linkage,
squareform
2-180

perms
2permsPurpose All permutations.

Syntax P = perms(v)

Description P = perms(v), where v is a row vector of length n, creates a matrix whose rows
consist of all possible permutations of the n elements of v. The matrix, P,
contains n! rows and n columns.

perms is only practical when n is less than 8 or 9.

Example perms([2 4 6])

ans =

 6 4 2
 4 6 2
 6 2 4
 2 6 4
 4 2 6
 2 4 6
2-181

poisscdf
2poisscdfPurpose Poisson cumulative distribution function (cdf).

Syntax P = poisscdf(X,LAMBDA)

Description poisscdf(X,LAMBDA) computes the Poisson cdf with parameter settings
LAMBDA at the values in X. The arguments X and LAMBDA must be the same size
except that a scalar argument functions as a constant matrix of the same size
of the other argument. The parameter, LAMBDA, is positive.

The Poisson cdf is:

Examples For example, consider a Quality Assurance department that performs random
tests of individual hard disks. Their policy is to shut down the manufacturing
process if an inspector finds more than four bad sectors on a disk. What is the
probability of shutting down the process if the mean number of bad sectors (λ)
is two?

probability = 1 – poisscdf(4,2)

probability =

 0.0527

About 5% of the time, a normally functioning manufacturing process will
produce more than four flaws on a hard disk.

Suppose the average number of flaws (λ) increases to four. What is the
probability of finding fewer than five flaws on a hard drive?

probability = poisscdf(4,4)

probability =

 0.6288

This means that this faulty manufacturing process continues to operate after
this first inspection almost 63% of the time.

p F x λ() e λ– λi

i!-----

i 0=

floor x()

∑= =
2-182

poissfit
2poissfitPurpose Parameter estimates and confidence intervals for Poisson data.

Syntax lambdahat = poissfit(X)

[lambdahat,lambdaci] = poissfit(X)

[lambdahat,lambdaci] = poissfit(X,alpha)

Description poissfit(X) returns the maximum likelihood estimate (MLE) of the
parameter of the Poisson distribution, λ, given the data X.

[lambdahat,lambdaci] = poissfit(X) also gives 95% confidence intervals in
lamdaci.

[lambdahat,lambdaci] = poissfit(X,alpha) gives 100(1–alpha) percent
confidence intervals. For example alpha = 0.001 yields 99.9% confidence
intervals.

The sample average is the MLE of λ.

Example r = poissrnd(5,10,2);
[l,lci] = poissfit(r)

l =

7.4000 6.3000

lci =

5.8000 4.8000
9.1000 7.9000

See Also betafit, binofit, expfit, gamfit, poissfit, unifit, weibfit

λ̂
1
n--- xi

i 1=

n

∑=
2-183

poissinv
2poissinvPurpose Inverse of the Poisson cumulative distribution function (cdf).

Syntax X = poissinv(P,LAMBDA)

Description poissinv(P,LAMBDA) returns the smallest value, X, such that the Poisson cdf
evaluated at X equals or exceeds P.

Examples If the average number of defects (λ) is two, what is the 95th percentile of the
number of defects?

poissinv(0.95,2)

ans =

 5

What is the median number of defects?

median_defects = poissinv(0.50,2)

median_defects =

 2
2-184

poisspdf
2poisspdfPurpose Poisson probability density function (pdf).

Syntax Y = poisspdf(X,LAMBDA)

Description poisspdf(X,LAMBDA) computes the Poisson pdf with parameter settings
LAMBDA at the values in X. The arguments X and LAMBDA must be the same size
except that a scalar argument functions as a constant matrix of the same size
of the other argument.

The parameter, λ, must be positive.

The Poisson pdf is:

x can be any non-negative integer. The density function is zero unless x is an
integer.

Examples A computer hard disk manufacturer has observed that flaws occur randomly in
the manufacturing process at the average rate of two flaws in a 4 Gb hard disk
and has found this rate to be acceptable. What is the probability that a disk will
be manufactured with no defects?

In this problem, λ = 2 and x = 0.

p = poisspdf(0,2)

p =

 0.1353

y f x λ()
λx

x!
-----e λ– I 0 1 …, ,() x()= =
2-185

poissrnd
2poissrndPurpose Random numbers from the Poisson distribution.

Syntax R = poissrnd(LAMBDA)

R = poissrnd(LAMBDA,m)

R = poissrnd(LAMBDA,m,n)

Description R = poissrnd(LAMBDA) generates Poisson random numbers with mean LAMBDA.
The size of R is the size of LAMBDA.

R = poissrnd(LAMBDA,m) generates Poisson random numbers with mean
LAMBDA. m is a 1-by-2 vector that contains the row and column dimensions of R.

R = poissrnd(LAMBDA,m,n) generates Poisson random numbers with mean
LAMBDA. The scalars m and n are the row and column dimensions of R.

Examples Generate a random sample of 10 pseudo-observations from a Poisson
distribution with λ = 2:

lambda = 2;
random_sample1 = poissrnd(lambda,1,10)

random_sample1 =

 1 0 1 2 1 3 4 2 0 0

random_sample2 = poissrnd(lambda,[1 10])

random_sample2 =

 1 1 1 5 0 3 2 2 3 4

random_sample3 = poissrnd(lambda(ones(1,10)))

random_sample3 =

 3 2 1 1 0 0 4 0 2 0
2-186

poisstat
2poisstatPurpose Mean and variance for the Poisson distribution.

Syntax M = poisstat(LAMBDA)

[M,V] = poisstat(LAMBDA)

Description M = poisstat(LAMBDA) returns the mean of the Poisson distribution with
parameter, LAMBDA. M and LAMBDA match each other in size.

[M,V] = poisstat(LAMBDA) also returns the variance of the Poisson
distribution.

For the Poisson distribution:

• the mean is λ.
• the variance is λ.

Examples Find the mean and variance for the Poisson distribution with λ = 2:

[m,v] = poisstat([1 2; 3 4])

m =

 1 2
 3 4

v =

 1 2
 3 4
2-187

polyconf
2polyconfPurpose Polynomial evaluation and confidence interval estimation.

Syntax [Y,DELTA] = polyconf(p,X,S)

[Y,DELTA] = polyconf(p,X,S,alpha)

Description [Y,DELTA] = polyconf(p,X,S) uses the optional output, S, generated by
polyfit to give 95% confidence intervals Y +/– DELTA. This assumes the errors
in the data input to polyfit are independent normal with constant variance.

[Y,DELTA] = polyconf(p,X,S,alpha) gives 100(1–alpha)% confidence
intervals. For example, alpha = 0.1 yields 90% intervals.

If p is a vector whose elements are the coefficients of a polynomial in
descending powers, such as those output from polyfit, then polyconf(p,X) is
the value of the polynomial evaluated at X. If X is a matrix or vector, the
polynomial is evaluated at each of the elements.

Examples This example gives predictions and 90% confidence intervals for computing
time for LU factorizations of square matrices with 100 to 200 columns.

n = [100 100:20:200];
for i = n
A = rand(i,i);
tic
B = lu(A);

t(ceil((i–80)/20)) = toc;
end

[p,S] = polyfit(n(2:7),t,3);
[time,delta_t] = polyconf(p,n(2:7),S,0.1)

time =

 0.0829 0.1476 0.2277 0.3375 0.4912 0.7032

delta_t =

 0.0064 0.0057 0.0055 0.0055 0.0057 0.0064
2-188

polyfit
2polyfitPurpose Polynomial curve fitting.

Syntax [p,S] = polyfit(x,y,n)

Description p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n that
fits the data, p(x(i)) to y(i), in a least-squares sense. The result p is a row
vector of length n+1 containing the polynomial coefficients in descending
powers.

[p,S] = polyfit(x,y,n) returns polynomial coefficients p, and matrix, S for
use with polyval to produce error estimates on predictions. If the errors in the
data, y, are independent normal with constant variance, polyval will produce
error bounds which contain at least 50% of the predictions.

You may omit S if you are not going to pass it to polyval or polyconf for
calculating error estimates.

Example [p,S] = polyfit(1:10,[1:10] + normrnd(0,1,1,10),1)

p =

 1.0300 0.4561

S =

 –19.6214 –2.8031
 0 –1.4639
 8.0000 0
 2.3180 0

See Also polyval, polytool, polyconf
polyfit is a function in MATLAB.

p x() p1xn p2xn 1– …pnx pn 1++ + +=
2-189

polytool
2polytoolPurpose Interactive plot for prediction of fitted polynomials.

Syntax polytool(x,y)

polytool(x,y,n)

polytool(x,y,n,alpha)

Description polytool(x,y) fits a line to the column vectors, x and y, and displays an
interactive plot of the result. This plot is graphic user interface for exploring
the effects of changing the polynomial degree of the fit. The plot shows the
fitted curve and 95% global confidence intervals on a new predicted value for
the curve. Text with current predicted value of y and its uncertainty appears
left of the y-axis.

polytool(x,y,n) initially fits a polynomial of order, n.

polytool(x,y,n,alpha) plots 100(1–alpha)% confidence intervals on the
predicted values.

polytool fits by least-squares using the regression model,

Evaluate the function by typing a value in the x-axis edit box or dragging the
vertical reference line on the plot. The shape of the pointer changes from an
arrow to a cross hair when you are over the vertical line to indicate that the line
is draggable. The predicted value of y will update as you drag the reference line.

The argument, n, controls the degree of the polynomial fit. To change the
degree of the polynomial, choose from the pop-up menu at the top of the figure.

When you are done, press the Close button.

yi β0 β1xi β2xi
2 … βnxi

n εi+ + ++ +=

εi N 0 σ2,()∼ i∀

Cov εi εj,() 0= i j,∀
2-190

polyval
2polyvalPurpose Polynomial evaluation.

Syntax Y = polyval(p,X)

[Y,DELTA] = polyval(p,X,S)

Description Y = polyval(p,X) returns the predicted value of a polynomial given its
coefficients, p, at the values in X.

[Y,DELTA] = polyval(p,X,S) uses the optional output, S, generated by
polyfit to generate error estimates, Y +/– DELTA. If the errors in the data input
to polyfit are independent normal with constant variance, Y +/– DELTA
contains at least 50% of the predictions.

If p is a vector whose elements are the coefficients of a polynomial in
descending powers, then polyval(p,X) is the value of the polynomial
evaluated at X. If X is a matrix or vector, the polynomial is evaluated at each of
the elements.

Examples Simulate the function y = x, adding normal random errors with a standard
deviation of 0.1. Then use polyfit to estimate the polynomial coefficients. Note
that tredicted Y values are within DELTA of the integer, X, in every case.

[p,S] = polyfit(1:10,(1:10) + normrnd(0,0.1,1,10),1);
X = magic(3);
[Y,D] = polyval(p,X,S)

Y =

 8.0696 1.0486 6.0636
 3.0546 5.0606 7.0666
 4.0576 9.0726 2.0516

D =

 0.0889 0.0951 0.0861
 0.0889 0.0861 0.0870
 0.0870 0.0916 0.0916

See Also polyfit, polytool, polyconf

polyval is a function in MATLAB.
2-191

prctile
2prctilePurpose Percentiles of a sample.

Syntax Y = prctile(X,p)

Description Y = prctile(X,p) calculates a value that is greater than p percent of the
values in X. The values of p must lie in the interval [0 100].

For vectors, prctile(X,p) is the pth percentile of the elements in X. For
instance, if p = 50 then Y is the median of X.

For matrix X and scalar p, prctile(X,p) is a row vector containing the pth
percentile of each column. If p is a vector, the ith row of Y is p(i) of X.

Examples x = (1:5)'*(1:5)

x =

 1 2 3 4 5
 2 4 6 8 10
 3 6 9 12 15
 4 8 12 16 20
 5 10 15 20 25

y = prctile(x,[25 50 75])

y =

 1.7500 3.5000 5.2500 7.0000 8.7500
 3.0000 6.0000 9.0000 12.0000 15.0000
 4.2500 8.5000 12.7500 17.0000 21.2500
2-192

princomp
2princompPurpose Principal Components Analysis (PCA).

Syntax PC = princomp(X)

[PC,SCORE,latent,tsquare] = princomp(X)

Description [PC,SCORE,latent,tsquare] = princomp(X) takes a data matrix X and
returns the principal components in PC, the so-called Z-scores in SCORE, the
eigenvalues of the covariance matrix of X in latent, and Hotelling's T2 statistic
for each data point in tsquare.

The Z-scores are the data formed by transforming the original data into the
space of the principal components. The values of the vector, latent, are the
variance of the columns of SCORE. Hotelling's T2 is a measure of the
multivariate distance of each observation from the center of the data set.

Example Compute principal components for the ingredients data in the Hald dataset,
and the variance accounted for by each component.

load hald;
[pc,score,latent,tsquare] = princomp(ingredients);
pc,latent

pc =

 0.0678 –0.6460 0.5673 –0.5062
 0.6785 –0.0200 –0.5440 –0.4933
 –0.0290 0.7553 0.4036 –0.5156
 –0.7309 –0.1085 –0.4684 –0.4844

latent =

 517.7969
 67.4964
 12.4054
 0.2372

Reference Jackson, J. E., A User's Guide to Principal Components, John Wiley and Sons,
Inc. 1991. pp. 1–25.

See Also barttest, pcacov, pcares
2-193

qqplot
2qqplotPurpose Quantile-quantile plot of two samples.

Syntax qqplot(X,Y)

qqplot(X,Y,pvec)

h = qqplot(...)

Description qqplot(X,Y) displays a quantile-quantile plot of two samples. If the samples
do come from the same distribution, the plot will be linear.

For matrix X and Y, qqplot displays a separate line for each pair of columns.
The plotted quantiles are the quantiles of the smaller dataset.

The plot has the sample data displayed with the plot symbol '+'. Superimposed
on the plot is a line joining the first and third quartiles of each distribution (this
is a robust linear fit of the order statistics of the two samples). This line is
extrapolated out to the ends of the sample to help evaluate the linearity of the
data.

Use qqplot(X,Y,pvec) to specify the quantiles in the vector pvec.

h = qqplot(X,Y,pvec) returns handles to the lines in h.

Examples Generate two normal samples with different means and standard deviations.
Then make a quantile-quantile plot of the two samples.

x = normrnd(0,1,100,1);
y = normrnd(0.5,2,50,1);
qqplot(x,y);

-3 -2 -1 0 1 2 3
-10

-5

0

5

10

X Quantiles

Y
 Q

ua
nt

ile
s

2-194

random
2randomPurpose Random numbers from a specified distribution.

Syntax y = random('name',A1,A2,A3,m,n)

Description random is a utility routine allowing you to access all the random number
generators in the Statistics Toolbox using the name of the distribution as a
parameter.

y = random('name',A1,A2,A3,m,n) returns a matrix of random numbers.
'name' is a string containing the name of the distribution. A1, A2, and A3 are
matrices of distribution parameters. Depending on the distribution some of the
parameters may not be necessary.

The arguments containing distribution parameters must all be the same size
except that scalar arguments function as constant matrices of the common size
of the other arguments.

The last two parameters, d and e, are the size of the matrix, y. If the
distribution parameters are matrices, then these parameters are optional, but
they must match the size of the other matrix arguments (see second example).

Examples rn = random('Normal',0,1,2,4)

rn =

 1.1650 0.0751 -0.6965 0.0591
 0.6268 0.3516 1.6961 1.7971

rp = random('Poisson',1:6,1,6)

rp =

 0 0 1 2 5 7
2-195

randtool
2randtoolPurpose Interactive random number generation using histograms for display.

Syntax randtool

r = randtool('output')

Description The randtool command sets up a graphic user interface for exploring the
effects of changing parameters and sample size on the histogram of random
samples from the supported probability distributions.

The M-file calls itself recursively using the action and flag parameters. For
general use call randtool without parameters.

To output the current set of random numbers, press the Output button. The
results are stored in the variable ans. Alternatively, the command

r = randtool('output') places the sample of random numbers in the vector,
r.

To sample repetitively from the same distribution, press the Resample button.

To change the distribution function, choose from the pop-up menu of functions
at the top of the figure.

To change the parameter settings, move the sliders or type a value in the edit
box under the name of the parameter. To change the limits of a parameter, type
a value in the edit box at the top or bottom of the parameter slider.

To change the sample size, type a number in the Sample Size edit box.

When you are done, press the Close button.

For an extensive discussion, see “The disttool Demo” on page 1-125.

See Also disttool
2-196

range
2rangePurpose Sample range.

Syntax y = range(X)

Description range(X) returns the difference between the maximum and the minimum of a
sample. For vectors, range(x) is the range of the elements. For matrices,
range(X) is a row vector containing the range of each column of X.

The range is an easily calculated estimate of the spread of a sample. Outliers
have an undue influence on this statistic, which makes it an unreliable
estimator.

Example The range of a large sample of standard normal random numbers is
approximately six. This is the motivation for the process capability indices Cp
and Cpk in statistical quality control applications.

rv = normrnd(0,1,1000,5);
near6 = range(rv)

near6 =

 6.1451 6.4986 6.2909 5.8894 7.0002

See Also std, iqr, mad
2-197

ranksum
2ranksumPurpose Wilcoxon rank sum test that two populations are identical.

Syntax p = ranksum(x,y,alpha)

[p,h] = ranksum(x,y,alpha)

Description p = ranksum(x,y,alpha) returns the significance probability that the
populations generating two independent samples, x and y, are identical. x and
y are vectors but can have different lengths; if they are unequal in length, x
must be smaller than y. alpha is the desired level of significance and must be
a scalar between zero and one.

[p,h] = ranksum(x,y,alpha) also returns the result of the hypothesis test, h.
h is zero if the populations of x and y are not significantly different. h is one if
the two populations are significantly different.

p is the probability of observing a result equally or more extreme than the one
using the data (x and y) if the null hypothesis is true. If p is near zero, this casts
doubt on this hypothesis.

Example This example tests the hypothesis of equality of means for two samples
generated with poissrnd.

x = poissrnd(5,10,1);
y = poissrnd(2,20,1);
[p,h] = ranksum(x,y,0.05)

p =

 0.0028

h =

 1

See Also signrank, signtest, ttest2
2-198

raylcdf
2raylcdfPurpose Rayleigh cumulative distribution function (cdf).

Syntax P = raylcdf(X,B)

Description P = raylcdf(X,B) returns the Rayleigh cumulative distribution function with
parameter B at the values in X.

The size of P is the common size of X and B. A scalar input functions as a
constant matrix of the same size as the other input.

The Rayleigh cdf is:

Example x = 0:0.1:3;
p = raylcdf(x,1);
plot(x,p)

Reference Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, Second
Edition, Wiley 1993. pp. 134–136.

See Also cdf, raylinv, raylpdf, raylrnd, raylstat

y F x b() t

b2------
0

x

∫ e

t2–

2b2--------- 
 

= = dt

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

2-199

raylinv
2raylinvPurpose Inverse of the Rayleigh cumulative distribution function.

Syntax X = raylinv(P,B)

Description X = raylinv(P,B) returns the inverse of the Rayleigh cumulative distribution
function with parameter B at the probabilities in P.

The size of X is the common size of P and B. A scalar input functions as a
constant matrix of the same size as the other input.

Example x = raylinv(0.9,1)

x =

 2.1460

See Also icdf, raylcdf, raylpdf, raylrnd, raylstat
2-200

raylpdf
2raylpdfPurpose Rayleigh probability density function.

Syntax Y = raylpdf(X,B)

Description Y = raylpdf(X,B) returns the Rayleigh probability density function with
parameter B at the values in X.

The size of Y is the common size of X and B. A scalar input functions as a
constant matrix of the same size as the other input.

The Rayleigh pdf is:

Example x = 0:0.1:3;
p = raylpdf(x,1);
plot(x,p)

See Also raylcdf, raylinv, raylrnd, raylstat

y f x b()
x

b2------e

x2–

2b2--------- 
 

= =

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8
2-201

raylrnd
2raylrndPurpose Random matrices from the Rayleigh distribution.

Syntax R = raylrnd(B)

R = raylrnd(B,m)

R = raylrnd(B,m,n)

Description R = raylrnd(B) returns a matrix of random numbers chosen from the Rayleigh
distribution with parameter B. The size of R is the size of B.

R = raylrnd(B,m) returns a matrix of random numbers chosen from the
Rayleigh distribution with parameter B. m is a 1-by-2 vector that contains the
row and column dimensions of R.

R = raylrnd(B,m,n) returns a matrix of random numbers chosen from the
Rayleigh distribution with parameter B. The scalars m and n are the row and
column dimensions of R.

Example r = raylrnd(1:5)

r =

 1.7986 0.8795 3.3473 8.9159 3.5182

See Also random, raylcdf, raylinv, raylpdf, raylstat
2-202

raylstat
2raylstatPurpose Mean and variance for the Rayleigh distribution.

Syntax M = raylstat(B)

[M,V] = raylstat(B)

Description [M,V] = raylstat(B) returns the mean and variance of the Rayleigh
distribution with parameter B.

For the Rayleigh distribution:

• The mean is .

• The variance is .

Example [mn,v] = raylstat(1)

mn =

 1.2533

v =

 0.4292

See Also raylcdf, raylinv, raylpdf, raylrnd

b
π
2--- 

 
1
2---

4 π–
2------------b2
2-203

rcoplot
2rcoplotPurpose Residual case order plot.

Syntax rcoplot(r,rint)

Description rcoplot(r,rint) displays an errorbar plot of the confidence intervals on the
residuals from a regression. The residuals appear in the plot in case order. r
and rint are outputs from the regress function.

Example X = [ones(10,1) (1:10)'];
y = X ∗ [10;1] + normrnd(0,0.1,10,1);
[b,bint,r,rint] = regress(y,X,0.05);
rcoplot(r,rint);

The figure shows a plot of the residuals with error bars showing 95% confidence
intervals on the residuals. All the error bars pass through the zero line,
indicating that there are no outliers in the data.

See Also regress

0 2 4 6 8 10

-0.2

-0.1

0

0.1

0.2

R
es

id
ua

ls

Case Number
2-204

refcurve
2refcurvePurpose Add a polynomial curve to the current plot.

Syntax h = refcurve(p)

Description refcurve adds a graph of the polynomial, p, to the current axes. The function
for a polynomial of degree n is:

y = p1xn + p2x(n-1) + ... + pnx + pn+1

Note that p1 goes with the highest order term.

h = refcurve(p) returns the handle to the curve.

Example Plot data for the height of a rocket against time, and add a reference curve
showing the theoretical height (assuming no air friction). The initial velocity of
the rocket is 100 m/sec.

h = [85 162 230 289 339 381 413 437 452 458 456 440 400 356];
plot(h,'+')
refcurve([–4.9 100 0])

See Also polyfit, polyval, refline

0 2 4 6 8 10 12 14
0

100

200

300

400

500
2-205

refline
2reflinePurpose Add a reference line to the current axes.

Syntax refline(slope,intercept)

refline(slope)

h = refline(slope,intercept)

refline

Description refline(slope,intercept) adds a reference line with the given slope and
intercept to the current axes.

refline(slope), where slope is a two-element vector, adds the line

 y = SLOPE(2) + SLOPE(1)x

to the figure.

h = refline(slope,intercept) returns the handle to the line.

refline with no input arguments superimposes the least squares line on each
line object in the current figure (except LineStyles '–','– –','.–'). This
behavior is equivalent to lsline.

Example y = [3.2 2.6 3.1 3.4 2.4 2.9 3.0 3.3 3.2 2.1 2.6]';
plot(y,'+')
refline(0,3)

See Also lsline, polyfit, polyval, refcurve

0 2 4 6 8 10 12
2

2.5

3

3.5
2-206

regress
2regressPurpose Multiple linear regression.

Syntax b = regress(y,X)

[b,bint,r,rint,stats] = regress(y,X)

[b,bint,r,rint,stats] = regress(y,X,alpha)

Description b = regress(y,X) returns the least squares fit of y on X.

regress solves the linear model

for β, where:

• y is an nx1 vector of observations,

• X is an nxp matrix of regressors,

• β is a px1 vector of parameters, and

• ε is an nx1 vector of random disturbances.

[b,bint,r,rint,stats] = regress(y,X) returns an estimate of β in b, a 95%
confidence interval for β, in the p-by-2 vector bint. The residuals are in r and
a 95% confidence interval for each residual, is in the n-by-2 vector rint. The
vector, stats, contains the R2 statistic along with the F and p values for the
regression.

[b,bint,r,rint,stats] = regress(y,X,alpha) gives 100(1-alpha)%
confidence intervals for bint and rint. For example, alpha = 0.2 gives 80%
confidence intervals.

Examples Suppose the true model is:

where I is the identity matrix.

y Xβ ε+=

ε N 0 σ2I,()∼

y 10 x ε+ +=

ε N 0 0.01I,()∼
2-207

regress
X = [ones(10,1) (1:10)']
X =
 1 1
 1 2
 1 3
 1 4
 1 5
 1 6
 1 7
 1 8
 1 9
 1 10

y = X ∗ [10;1] + normrnd(0,0.1,10,1)
y =
 11.1165
 12.0627
 13.0075
 14.0352
 14.9303
 16.1696
 17.0059
 18.1797
 19.0264
 20.0872

[b,bint] = regress(y,X,0.05)

b =
 10.0456
 1.0030

bint =
 9.9165 10.1747
 0.9822 1.0238

Compare b to [10 1]'. Note that bint includes the true model values.

Reference Chatterjee, S. and A. S. Hadi. Influential Observations, High Leverage Points,
and Outliers in Linear Regression. Statistical Science, 1986. pp. 379–416.
2-208

regstats
2regstatsPurpose Regression diagnostics graphical user interface.

Syntax regstats(responses,DATA)

regstats(responses,DATA,'model')

Description regstats(responses,DATA) generates regression diagnostics for a linear
additive model with a constant term. The dependent variable is the vector,
responses. Values of the independent variables are in the matrix, DATA.

The function creates a figure with a group of checkboxes that save diagnostic
statistics to the base workspace using variable names you can specify.

regstats(responses,data,'model') controls the order of the regression
model. 'model' can be one of these strings:

• 'interaction' – includes constant, linear, and cross product terms.

• 'quadratic' – interactions plus squared terms.

• 'purequadratic' – includes constant, linear and squared terms.

The literature suggests many diagnostic statistics for evaluating multiple
linear regression. regstats provides these diagnostics:

• Q from QR decomposition.

• R from QR decomposition.

• Regression coefficients.

• Covariance of regression coefficients.

• Fitted values of the response data.

• Residuals.

• Mean squared error.

• Leverage.

• “Hat” matrix.

• Delete-1 variance.

• Delete-1 coefficients.

• Standardized residuals.

• Studentized residuals.

• Change in regression coefficients.
2-209

regstats
• Change in fitted values.

• Scaled change in fitted values.

• Change in covariance.

• Cook's distance.

For more detail press the Help button in the regstats window. This displays
a hypertext help that gives formulae and interpretations for each of these
regression diagnostics.

Algorithm The usual regression model is: y = Xβ + ε
where:

• y is an n by 1 vector of responses.

• X is an n by p matrix of predictors.

• β is an p by 1 vector of parameters.

• ε is an n by 1 vector of random disturbances.

Let X = Q*R where Q and R come from a QR Decomposition of X. Q is orthogonal
and R is triangular. Both of these matrices are useful for calculating many
regression diagnostics (Goodall 1993).

The standard textbook equation for the least squares estimator of β is:

However, this definition has poor numeric properties. Particularly dubious is
the computation of , which is both expensive and imprecise.

Numerically stable MATLAB code for β is: b = R\(Q'*y);

Reference Goodall, C. R. (1993). Computation using the QR decomposition. Handbook in
Statistics, Volume 9. Statistical Computing (C. R. Rao, ed.). Amsterdam, NL
Elsevier/North-Holland.

See Also leverage, stepwise, regress

β̂ b X'X()
1–

X'y= =

X'X()
1–
2-210

ridge
2ridgePurpose Parameter estimates for ridge regression.

Syntax b = ridge(y,X,k)

Description b = ridge(y,X,k) returns the ridge regression coefficients, b.

Given the linear model y = Xβ + ε
where:

• X is an n by p matrix.

• y is the n by 1 vector of observations.

• k is a scalar constant (the ridge parameter).

The ridge estimator of β is: .

When k = 0, b is the least squares estimator. For increasing k, the bias of b
increases, but the variance of b falls. For poorly conditioned X, the drop in the
variance more than compensates for the bias.

Example This example shows how the coefficients change as the value of k increases,
using data from the hald dataset.

load hald;
b = zeros(4,100);
kvec = 0.01:0.01:1;
count = 0;
for k = 0.01:0.01:1
count = count + 1;
b(:,count) = ridge(heat,ingredients,k);
end
plot(kvec',b'),xlabel('k'),ylabel('b','FontName','Symbol')

b X'X kI+()
1–

X'y=

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

k

β

2-211

ridge
See Also regress, stepwise
2-212

rowexch
2rowexchPurpose D-optimal design of experiments – row exchange algorithm.

Syntax settings = rowexch(nfactors,nruns)

[settings,X] = rowexch(nfactors,nruns)

[settings,X] = rowexch(nfactors,nruns,'model')

Description settings = rowexch(nfactors,nruns) generates the factor settings matrix,
settings, for a D-Optimal design using a linear additive model with a constant
term. settings has nruns rows and nfactors columns.

[settings,X] = rowexch(nfactors,nruns) also generates the associated
design matrix, X.

[settings,X] = rowexch(nfactors,nruns,'model') produces a design for
fitting a specified regression model. The input, 'model', can be one of these
strings:

• 'interaction' – includes constant, linear, and cross product terms.

• 'quadratic' – interactions plus squared terms.

• 'purequadratic' – includes constant, linear and squared terms.

Example This example illustrates that the D-optimal design for three factors in eight
runs, using an interactions model, is a two level full-factorial design.

s = rowexch(3,8,'interaction')

s =

 –1 –1 1
 1 –1 –1
 1 –1 1
 –1 –1 –1
 –1 1 1
 1 1 1
 –1 1 –1
 1 1 –1

See Also cordexch, daugment, dcovary, fullfact, ff2n, hadamard
2-213

rsmdemo
2rsmdemoPurpose Demo of design of experiments and surface fitting.

Syntax rsmdemo

Description rsmdemo creates a GUI that simulates a chemical reaction. To start, you have
a budget of 13 test reactions. Try to find out how changes in each reactant affect
the reaction rate. Determine the reactant settings that maximize the reaction
rate. Estimate the run-to-run variability of the reaction. Now run a designed
experiment using the model pop-up. Compare your previous results with the
output from response surface modeling or nonlinear modeling of the reaction.
The GUI has the following elements:

• A Run button to perform one reactor run at the current settings.

• An Export button to export the X and y data to the base workspace.

• Three sliders with associated data entry boxes to control the partial
pressures of the chemical reactants: Hydrogen, n-Pentane, and Isopentane.

• A text box to report the reaction rate.

• A text box to keep track of the number of test reactions you have left.

Example See “The rsmdemo Demo” on page 1-131.

See Also rstool, nlintool, cordexch
2-214

rstool
2rstoolPurpose Interactive fitting and visualization of a response surface.

Syntax rstool(x,y)

rstool(x,y,'model')

rstool(x,y,'model',alpha,'xname','yname')

Description rstool(x,y) displays an interactive prediction plot with 95% global confidence
intervales. This plot results from a multiple regression of (X,y) data using a
linear additive model.

rstool(x,y,'model') allows control over the initial regression model. 'model'
can be one of the following strings:

• 'interaction' – includes constant, linear, and cross product terms.

• 'quadratic' – interactions plus squared terms.

• 'purequadratic' – includes constant, linear and squared terms.

rstool(x,y,'model',alpha) plots 100(1 – alpha)% global confidence interval
for predictions as two red curves. For example, alpha = 0.01 gives 99%
confidence intervals.

rstool displays a “vector” of plots, one for each column of the matrix of inputs,
x. The response variable, y, is a column vector that matches the number of rows
in x.

rstool(x,y,'model',alpha,'xname','yname') labels the graph using the
string matrix 'xname' for the labels to the x-axes and the string, 'yname', to
label the y-axis common to all the plots.

Drag the dotted white reference line and watch the predicted values update
simultaneously. Alternatively, you can get a specific prediction by typing the
value of x into an editable text field. Use the pop-up menu labeled Model to
interactively change the model. Use the pop-up menu labeled Export to move
specified variables to the base workspace.

Example See “Quadratic Response Surface Models” on page 1-73.

See Also nlintool
2-215

schart
2schartPurpose Chart of standard deviation for Statistical Process Control.

Syntax schart(DATA,conf)

schart(DATA,conf,specs)

schart(DATA,conf,specs)

[outliers,h] = schart(DATA,conf,specs)

Description schart(data) displays an S chart of the grouped responses in DATA. The rows
of DATA contain replicate observations taken at a given time. The rows must be
in time order. The upper and lower control limits are a 99% confidence interval
on a new observation from the process. So, roughly 99% of the plotted points
should fall between the control limits.

schart(DATA,conf) allows control of the the confidence level of the upper and
lower plotted confidence limits. For example, conf = 0.95 plots 95% confidence
intervals.

schart(DATA,conf,specs) plots the specification limits in the two element
vector, specs.

[outliers,h] = schart(data,conf,specs) returns outliers, a vector of
indices to the rows where the mean of DATA is out of control, and h, a vector of
handles to the plotted lines.

Example This example plots an S chart of measurements on newly machined parts,
taken at one hour intervals for 36 hours. Each row of the runout matrix
contains the measurements for 4 parts chosen at random. The values indicate,
2-216

schart
in thousandths of an inch, the amount the part radius differs from the target
radius.

load parts
schart(runout)

Reference Montgomery, D., Introduction to Statistical Quality Control, John Wiley and
Sons 1991. p. 235.

See Also capaplot, ewmaplot, histfit, xbarplot

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
S Chart

Sample Number

S
ta

nd
ar

d
D

ev
ia

tio
n

UCL

LCL
2-217

signrank
2signrankPurpose Wilcoxon signed rank test of equality of medians.

Syntax p = signrank(x,y,alpha)

[p,h] = signrank(x,y,alpha)

Description p = signrank(x,y,alpha) returns the significance probability that the
medians of two matched samples, x and y, are equal. x and y must be vectors
of equal length. alpha is the desired level of significance, and must be a scalar
between zero and one.

[p,h] = signrank(x,y,alpha) also returns the result of the hypothesis test,
h. h is zero if the difference in medians of x and y is not significantly different
from zero. h is one if the two medians are significantly different.

p is the probability of observing a result equally or more extreme than the one
using the data (x and y) if the null hypothesis is true. p is calculated using the
rank values for the differences between corresponding elements in x and y. If p
is near zero, this casts doubt on this hypothesis.

Example This example tests the hypothesis of equality of means for two samples
generated with normrnd. The samples have the same theoretical mean but
different standard deviations.

x = normrnd(0,1,20,1);
y = normrnd(0,2,20,1);
[p,h] = signrank(x,y,0.05)

p =

 0.2568

h =

 0

See Also ranksum, signtest, ttest
2-218

signtest
2signtestPurpose Sign test for paired samples.

Syntax p = signtest(x,y,alpha)

[p,h] = signtest(x,y,alpha)

Description p = signtest(x,y,alpha) returns the significance probability that the
medians of two matched samples, x and y, are equal. x and y must be vectors
of equal length. y may also be a scalar; in this case, signtest computes the
probability that the median of x is different from the constant, y. alpha is the
desired level of significance and must be a scalar between zero and one.

[p,h] = signtest(x,y,alpha) also returns the result of the hypothesis test,
h. h is zero if the difference in medians of x and y is not significantly different
from zero. h is one if the two medians are significantly different.

p is the probability of observing a result equally or more extreme than the one
using the data (x and y) if the null hypothesis is true. p is calculated using the
signs (plus or minus) of the differences between corresponding elements in x
and y. If p is near zero, this casts doubt on this hypothesis.

Example This example tests the hypothesis of equality of means for two samples
generated with normrnd. The samples have the same theoretical mean but
different standard deviations.

x = normrnd(0,1,20,1);
y = normrnd(0,2,20,1);
[p,h] = signtest(x,y,0.05)

p =

 0.8238

h =

 0

See Also ranksum, signrank, ttest
2-219

skewness
2skewnessPurpose Sample skewness.

Syntax y = skewness(X)

Description skewness(X) returns the sample skewness of X. For vectors, skewness(x) is the
skewness of the elements of x. For matrices, skewness(X) is a row vector
containing the sample skewness of each column.

Skewness is a measure of the asymmetry of the data around the sample mean.
If skewness is negative, the data are spread out more to the left of the mean
than to the right. If skewness is positive, the data are spread out more to the
right. The skewness of the normal distribution (or any perfectly symmetric
distribution) is zero.

The skewness of a distribution is defined as:

where E(x) is the expected value of x.

Example X = randn([5 4])

X =

 1.1650 1.6961 –1.4462 –0.3600
 0.6268 0.0591 –0.7012 –0.1356
 0.0751 1.7971 1.2460 –1.3493
 0.3516 0.2641 –0.6390 –1.2704
 –0.6965 0.8717 0.5774 0.9846

y = skewness(X)

y =

 –0.2933 0.0482 0.2735 0.4641

See Also kurtosis, mean, moment, std, var

y
E x µ–()3

σ3------------------------=
2-220

squareform
2squareform

Purpose Reformat the output of pdist into a square matrix.

Syntax S = squareform(Y)

Description S = squareform(Y) reformats the distance information returned by pdist from
a vector into a square matrix. In this format, S(i,j) denotes the distance
between the i and j observations in the original data.

See Also See pdist.
2-221

std
2stdPurpose Standard deviation of a sample.

Syntax y = std(X)

Description std(X) computes the sample standard deviation of the data in X. For vectors,
std(x) is the standard deviation of the elements in x. For matrices, std(X) is
a row vector containing the standard deviation of each column of X.

std(X) normalizes by n–1 where n is the sequence length. For normally
distributed data, the square of the standard deviation is the minimum variance
unbiased estimator of σ 2 (the second parameter).

The standard deviation is

where the sample average is .

Examples In each column, the expected value of y is one.

x = normrnd(0,1,100,6);
y = std(x)

y =

 0.9536 1.0628 1.0860 0.9927 0.9605 1.0254

y = std(–1:2:1)

y =

 1.4142

See Also cov, var
std is a function in MATLAB.

s
1

n 1–
------------- xi x–()2

i 1=

n

∑
 
 
 
 

1
2---

=

x
1
n--- xi∑=
2-222

stepwise
2stepwisePurpose Interactive environment for stepwise regression.

Syntax stepwise(X,y)

stepwise(X,y,inmodel)

stepwise(X,y,inmodel,alpha)

Description stepwise(X,y) fits a regression model of y on the columns of X. It displays
three figure windows for interactively controlling the stepwise addition and
removal of model terms.

stepwise(X,y,inmodel) allows control of the terms in the original regression
model. The values of vector, inmodel, are the indices of the columns of the
matrix, X, to include in the initial model.

stepwise(X,y,inmodel,alpha) allows control of the length confidence
intervals on the fitted coefficients. alpha is the significance for testing each
term in the model. By default, alpha = 1 – (1 – 0.025)(1/p) where p is the number
of columns in X. This translates to plotted 95% simultaneous confidence
intervals (Bonferroni) for all the coefficients.

The least squares coefficient is plotted with a green filled circle. A coefficient is
not significantly different from zero if its confidence interval crosses the white
zero line. Significant model terms are plotted using solid lines. Terms not
significantly different from zero are plotted with dotted lines.

Click on the confidence interval lines to toggle the state of the model
coefficients. If the confidence interval line is green the term is in the model. If
the the confidence interval line is red the term is not in the model.

Use the pop-up menu, Export, to move variables to the base workspace.

Example See “Stepwise Regression” on page 1-75.

Reference Draper, N. and H. Smith, Applied Regression Analysis, Second Edition, John
Wiley and Sons, Inc. 1981 pp. 307–312.

See Also regstats, regress, rstool
2-223

surfht
2surfhtPurpose Interactive contour plot.

Syntax surfht(Z)

surfht(x,y,Z)

Description surfht(Z) is an interactive contour plot of the matrix Z treating the values in
Z as height above the plane. The x-values are the column indices of Z while the
y-values are the row indices of Z.

surfht(x,y,Z), where x and y are vectors specify the x and y-axes on the
contour plot. The length of x must match the number of columns in Z, and the
length of y must match the number of rows in Z.

There are vertical and horizontal reference lines on the plot whose intersection
defines the current x-value and y-value. You can drag these dotted white
reference lines and watch the interpolated z-value (at the top of the plot)
update simultaneously. Alternatively, you can get a specific interpolated
z-value by typing the x-value and y-value into editable text fields on the x-axis
and y-axis respectively.
2-224

tabulate
2tabulatePurpose Frequency table.

Syntax table = tabulate(x)

tabulate(x)

Description table = tabulate(x) takes a vector of positive integers, x, and returns a
matrix, table.

The first column of table contains the values of x. The second contains the
number of instances of this value. The last column contains the percentage of
each value.

tabulate with no output arguments displays a formatted table in the
command window.

Example tabulate([1 2 4 4 3 4])

Value Count Percent
 1 1 16.67%
 2 1 16.67%
 3 1 16.67%
 4 3 50.00%

See Also pareto
2-225

tblread
2tblreadPurpose Read tabular data from the file system.

Syntax [data,varnames,casenames] = tblread

[data,varnames,casenames] = tblread('filename')

[data,varnames,casenames] = tblread('filename','delimiter')

Description [data,varnames,casenames] = tblread displays the File Open dialog box for
interactive selection of the tabular data file. The file format has variable names
in the first row, case names in the first column and data starting in the (2,2)
position.

[data,varnames,casenames] = tblread(filename) allows command line
specification of the name of a file in the current directory, or the complete
pathname of any file.

[data,varnames,casenames] = tblread(filename,'delimiter') allows
specification of the field 'delimiter' in the file. Accepted values are 'tab',
'space', or 'comma'.

tblread returns the data read in three values.

Return
Value

Description

data Numeric matrix with a value for each variable-case pair.

varnames String matrix containing the variable names in the first
row.

casenames String matrix containing the names of each case in the first
column.
2-226

tblread
Example [data,varnames,casenames] = tblread('sat.dat')

data =

 470 530
 520 480

varnames =

Male
Female

casenames =

Verbal
Quantitative

See Also caseread, tblwrite
2-227

tblwrite
2tblwritePurpose Writes tabular data to the file system.

Syntax tblwrite(data,'varnames','casenames')

tblwrite(data,'varnames','casenames','filename')

Description tblwrite(data,'varnames','casenames') displays the File Open dialog box
for interactive specification of the tabular data output file. The file format has
variable names in the first row, case names in the first column and data
starting in the (2,2) position.

'varnames' is a string matrix containing the variable names. 'casenames' is
a string matrix containing the names of each case in the first column. data is
a numeric matrix with a value for each variable-case pair.

tblwrite(data,'varnames','casenames','filename') allows command line
specification of a file in the current directory, or the complete pathname of any
file in the string, 'filename'.

Example Continuing the example from tblread:

tblwrite(data,varnames,casenames,'sattest.dat')
type sattest.dat

Male Female
Verbal 470 530
Quantitative 520 480

See Also casewrite, tblread
2-228

tcdf
2tcdfPurpose Student’s t cumulative distribution function (cdf).

Syntax P = tcdf(X,V)

Description tcdf(X,V) computes Student’s t cdf with V degrees of freedom at the values in
X. The arguments X and V must be the same size except that a scalar argument
functions as a constant matrix of the same size of the other argument.

The parameter, V, is a positive integer.

The t cdf is:

The result, p, is the probability that a single observation from the t
distribution with ν degrees of freedom will fall in the interval (–∞ x].

Examples Suppose 10 samples of Guinness beer have a mean alcohol content of 5.5% by
volume and the standard deviation of these samples is 0.5%. What is the
probability that the true alcohol content of Guinness beer is less than 5%?

t = (5.0 – 5.5) / 0.5;
probability = tcdf(t,10 – 1)

probability =

 0.1717

p F x ν()
Γ

ν 1+
2------------ 

 

Γ
ν
2--- 

 

1
νπ

1

1
t2

ν-----+ 
 

ν 1+
2------------

------------------------------ td
∞–

x

∫= =
2-229

tinv
2tinvPurpose Inverse of the Student’s t cumulative distribution function (cdf).

Syntax X = tinv(P,V)

Description tinv(P,V) computes the inverse of Student’s t cdf with parameter V for the
probabilities in P. The arguments P and V must be the same size except that a
scalar argument functions as a constant matrix of the size of the other
argument.

The degrees of freedom, V, must be a positive integer and P must lie in the
interval [0 1].

The t inverse function in terms of the t cdf is

where

The result, x, is the solution of the integral equation of the t cdf with parameter
ν where you supply the desired probability p.

Examples What is the 99th percentile of the t distribution for one to six degrees of
freedom?

percentile = tinv(0.99,1:6)

percentile =

 31.8205 6.9646 4.5407 3.7469 3.3649 3.1427

x F 1– p ν() x:F x ν() p={ }= =

p F x ν()
Γ

ν 1+
2------------ 

 

Γ
ν
2--- 

 

1
νπ

1

1
t2

ν-----+ 
 

ν 1+
2------------

------------------------------ td
∞–

x

∫= =
2-230

tpdf
2tpdfPurpose Student’s t probability density function (pdf).

Syntax Y = tpdf(X,V)

Description tpdf(X,V) computes Student’s t pdf with parameter V at the values in X. The
arguments X and V must be the same size except that a scalar argument
functions as a constant matrix of the same size of the other argument.

The degrees of freedom, V, must be a positive integer.

Student’s t pdf is:

Examples The mode of the t distribution is at x = 0. This example shows that the value of
the function at the mode is an increasing function of the degrees of freedom.

tpdf(0,1:6)

ans =

 0.3183 0.3536 0.3676 0.3750 0.3796 0.3827

The t distribution converges to the standard normal distribution as the degrees
of freedom approaches infinity. How good is the approximation for v = 30?

difference = tpdf(–2.5:2.5,30) – normpdf(–2.5:2.5)

difference =

 0.0035 –0.0006 –0.0042 –0.0042 –0.0006 0.0035

y f x ν()
Γ

ν 1+
2------------ 

 

Γ
ν
2--- 

 

1
νπ

1

1
x2

ν-----+ 
 

ν 1+
2------------

-------------------------------= =
2-231

trimmean
2trimmeanPurpose Mean of a sample of data excluding extreme values.

Syntax m = trimmean(X,percent)

Description trimmean(X,percent) calculates the mean of a sample X excluding the highest
and lowest percent/2 of the observations. The trimmed mean is a robust
estimate of the location of a sample. If there are outliers in the data, the
trimmed mean is a more representative estimate of the center of the body of the
data. If the data is all from the same probability distribution, then the trimmed
mean is less efficient than the sample average as an estimator of the location
of the data.

Examples This example shows a Monte Carlo simulation of the relative efficiency of the
10% trimmed mean to the sample average for normal data.

x = normrnd(0,1,100,100);
m = mean(x);
trim = trimmean(x,10);
sm = std(m);
strim = std(trim);
efficiency = (sm/strim).^2
efficiency =

 0.9702

See Also mean, median, geomean, harmmean
2-232

trnd
2trndPurpose Random numbers from Student’s t distribution.

Syntax R = trnd(V)

R = trnd(V,m)

R = trnd(V,m,n)

Description R = trnd(V) generates random numbers from Student’s t distribution with V
degrees of freedom. The size of R is the size of V.

R = trnd(V,m) generates random numbers from Student’s t distribution with
V degrees of freedom. m is a 1-by-2 vector that contains the row and column
dimensions of R.

R = trnd(V,m,n) generates random numbers from Student’s t distribution
with V degrees of freedom. The scalars m and n are the row and column
dimensions of R.

Examples noisy = trnd(ones(1,6))

noisy =

 19.7250 0.3488 0.2843 0.4034 0.4816 –2.4190

numbers = trnd(1:6,[1 6])

numbers =

 –1.9500 –0.9611 –0.9038 0.0754 0.9820 1.0115

numbers = trnd(3,2,6)

numbers =

 –0.3177 –0.0812 –0.6627 0.1905 –1.5585 –0.0433
 0.2536 0.5502 0.8646 0.8060 –0.5216 0.0891
2-233

tstat
2tstatPurpose Mean and variance for the Student’s t distribution.

Syntax [M,V] = tstat(NU)

Description For the Student’s t distribution with parameter, ν:

• The mean is zero for values of ν greater than 1. If ν is one, the mean does not
exist.

• The variance, for values of ν greater than 2, is .

Examples The mean and variance for 1 to 30 degrees of freedom.

[m,v] = tstat(reshape(1:30,6,5))

m =

 NaN 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

v =

 NaN 1.4000 1.1818 1.1176 1.0870
 NaN 1.3333 1.1667 1.1111 1.0833
 3.0000 1.2857 1.1538 1.1053 1.0800
 2.0000 1.2500 1.1429 1.1000 1.0769
 1.6667 1.2222 1.1333 1.0952 1.0741
 1.5000 1.2000 1.1250 1.0909 1.0714

Note that the variance does not exist for one and two degrees of freedom.

ν
ν 2–

2-234

ttest
2ttestPurpose Hypothesis testing for a single sample mean.

Syntax h = ttest(x,m)

h = ttest(x,m,alpha)

[h,sig,ci] = ttest(x,m,alpha,tail)

Description ttest(x,m) performs a t-test at significance level 0.05 to determine whether a
sample from a normal distribution (in x) could have mean m when the standard
deviation is unknown.

h = ttest(x,m,alpha) gives control of the significance level, alpha. For
example if alpha = 0.01, and the result, h, is 1 you can reject the null hypothesis
at the significance level 0.01. If h =0, you cannot reject the null hypothesis at
the alpha level of significance.

[h,sig,ci] = ttest(x,m,alpha,tail) allows specification of one or
two-tailed tests. tail is a flag that specifies one of three alternative
hypotheses:

• tail = 0 (default) specifies the alternative, .

• tail = 1 specifies the alternative, .

• tail = –1 specifies the alternative, .

sig is the p-value associated with the T-statistic.

sig is the probability that the observed value of T could be as large or larger by
chance under the null hypothesis that the mean of x is equal to µ.

ci is a 1–alpha confidence interval for the true mean.

Example This example generates 100 normal random numbers with theoretical mean
zero and standard deviation one. The observed mean and standard deviation
are different from their theoretical values, of course. We test the hypothesis
that there is no true difference.

x µ≠
x µ>

x µ<

T
x µ–

s------------=
2-235

ttest
Normal random number generator test.

x = normrnd(0,1,1,100);
[h,sig,ci] = ttest(x,0)
h =

 0

sig =

 0.4474

ci =

 –0.1165 0.2620

The result, h = 0, means that we cannot reject the null hypothesis. The
significance level is 0.4474, which means that by chance we would have
observed values of T more extreme than the one in this example in 45 of 100
similar experiments. A 95% confidence interval on the mean is [–0.1165
0.2620], which includes the theoretical (and hypothesized) mean of zero.
2-236

ttest2
2ttest2Purpose Hypothesis testing for the difference in means of two samples.

Syntax [h,significance,ci] = ttest2(x,y)

[h,significance,ci] = ttest2(x,y,alpha)

[h,significance,ci] = ttest2(x,y,alpha,tail)

Description h = ttest2(x,y) performs a t-test to determine whether two samples from a
normal distribution (in x and y) could have the same mean when the standard
deviations are unknown but assumed equal.

h, the result, is 1 if you can reject the null hypothesis at the 0.05 significance
level alpha and 0 otherwise.

significance is the p-value associated with the T-statistic.

significance is the probability that the observed value of T could be as large
or larger by chance under the null hypothesis that the mean of x is equal to the
mean of y.

ci is a 95% confidence interval for the true difference in means.

[h,significance,ci] = ttest2(x,y,alpha) gives control of the significance
level, alpha. For example if alpha = 0.01, and the result, h, is 1, you can reject
the null hypothesis at the significance level 0.01. ci in this case is a
100(1–alpha)% confidence interval for the true difference in means.

ttest2(x,y,alpha,tail) allows specification of one or two-tailed tests. tail
is a flag that specifies one of three alternative hypotheses:

• tail = 0 (default) specifies the alternative, .

• tail = 1 specifies the alternative, .

• tail = –1 specifies the alternative, .

Examples This example generates 100 normal random numbers with theoretical mean
zero and standard deviation one. We then generate 100 more normal random
numbers with theoretical mean one half and standard deviation one. The
observed means and standard deviations are different from their theoretical
values, of course. We test the hypothesis that there is no true difference
between the two means. Notice that the true difference is only one half of the

T
x y–

s------------=

µx µy≠
µx µy>

µx µy<
2-237

ttest2
standard deviation of the individual observations, so we are trying to detect a
signal that is only one half the size of the inherent noise in the process.

x = normrnd(0,1,100,1);
y = normrnd(0.5,1,100,1);
[h,significance,ci] = ttest2(x,y)

h =

1

significance =

 0.0017

ci =

 –0.7352 –0.1720

The result, h = 1, means that we can reject the null hypothesis. The
significance is 0.0017, which means that by chance we would have
observed values of t more extreme than the one in this example in only 17
of 10,000 similar experiments! A 95% confidence interval on the mean is
[–0.7352 –0.1720], which includes the theoretical (and hypothesized) difference
of –0.5.
2-238

unidcdf
2unidcdfPurpose Discrete uniform cumulative distribution (cdf) function.

Syntax P = unidcdf(X,N)

Description unidcdf(X,N) computes the discrete uniform cdf with parameter settings N at
the values in X. The arguments X and N must be the same size except that a
scalar argument functions as a constant matrix of the same size of the other
argument.

The maximum observable value, N, is a positive integer.

The discrete uniform cdf is:

The result, p, is the probability that a single observation from the discrete
uniform distribution with maximum, N, will be a positive integer less than or
equal to x. The values, x, do not need to be integers.

Examples What is the probability of drawing a number 20 or less from a hat with the
numbers from 1 to 50 inside?

probability = unidcdf(20,50)

probability =

 0.4000

p F x N()
floor x()

N----------------------I 1 … N, ,() x()= =
2-239

unidinv
2unidinvPurpose Inverse of the discrete uniform cumulative distribution function.

Syntax X = unidinv(P,N)

Description unidinv(P,N) returns the smallest integer X such that the discrete uniform cdf
evaluated at X is equal to or exceeds P. You can think of P as the probability of
drawing a number as large as X out of a hat with the numbers 1 through N
inside.

The argument P must lie on the interval [0 1] and N must be a positive integer.
Each element of X is a positive integer.

Examples x = unidinv(0.7,20)

x =

14

y = unidinv(0.7 + eps,20)

y =

15

A small change in the first parameter produces a large jump in output. The cdf
and its inverse are both step functions. The example shows what happens at a
step.
2-240

unidpdf
2unidpdfPurpose Discrete uniform probability density function (pdf).

Syntax Y = unidpdf(X,N)

Description unidpdf(X,N) computes the discrete uniform pdf with parameter settings, N, at
the values in X. The arguments X and N must be the same size except that a
scalar argument functions as a constant matrix of the same size of the other
argument.

The parameter N must be a positive integer.

The discrete uniform pdf is:

You can think of y as the probability of observing any one number between 1
and n.

Examples For fixed n, the uniform discrete pdf is a constant.

y = unidpdf(1:6,10)

y =

 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Now fix x , and vary n.

likelihood = unidpdf(5,4:9)

likelihood =

 0 0.2000 0.1667 0.1429 0.1250 0.1111

y f x N()
1
N----I 1 … N, ,() x()= =
2-241

unidrnd
2unidrndPurpose Random numbers from the discrete uniform distribution.

Syntax R = unidrnd(N)

R = unidrnd(N,mm)

R = unidrnd(N,mm,nn)

Description The discrete uniform distribution arises from experiments equivalent to
drawing a number from one to N out of a hat.

R = unidrnd(N) generates discrete uniform random numbers with maximum,
N. The size of R is the size of N.

R = unidrnd(N,mm) generates discrete uniform random numbers with
maximum, N. mm is a 1-by-2 vector that contains the row and column dimensions
of R.

R = unidrnd(N,mm,nn) generates discrete uniform random numbers with
maximum, N. The scalars mm and nn are the row and column dimensions of R.

The parameter, N, must have positive integer elements.

Examples In the Massachusetts lottery a player chooses a four digit number. Generate
random numbers for Monday through Saturday.

numbers = unidrnd(10000,1,6) – 1

numbers =

 2189 470 6788 6792 9346
2-242

unidstat
2unidstatPurpose Mean and variance for the discrete uniform distribution.

Syntax [M,V] = unidstat(N)

Description For the discrete uniform distribution:

• The mean is .

• The variance is .

Examples [m,v] = unidstat(1:6)

m =

 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000

v =

 0 0.2500 0.6667 1.2500 2.0000 2.9167

N 1+
2--------------

N2 1–
12-----------------
2-243

unifcdf
2unifcdfPurpose Continuous uniform cumulative distribution function (cdf).

Syntax P = unifcdf(X,A,B)

Description unifcdf(X,A,B) computes the uniform cdf with parameters A and B at the
values in X. The arguments X, A and B must all be the same size except that
scalar arguments function as constant matrices of the common size of the other
arguments.

A and B are the minimum and maximum values respectively.

The uniform cdf is:

The standard uniform distribution has A = 0 and B = 1.

Examples What is the probability that an observation from a standard uniform
distribution will be less than 0.75?

probability = unifcdf(0.75)

probability =

 0.7500

What is the probability that an observation from a uniform distribution with
a = –1 and b = 1 will be less than 0.75?

probability = unifcdf(0.75,–1,1)

probability =

 0.8750

p F x a b,()
x a–
b a–
------------I a b,[] x()= =
2-244

unifinv
2unifinvPurpose Inverse continuous uniform cumulative distribution function (cdf).

Syntax X = unifinv(P,A,B)

Description unifinv(P,A,B) computes the inverse of the uniform cdf with parameters A
and B at the values in X. The arguments X, A, and B must all be the same size
except that scalar arguments function as constant matrices of the common size
of the other arguments.

A and B are the minimum and maximum values respectively.

The inverse of the uniform cdf is:

The standard uniform distribution has A = 0 and B = 1.

Examples What is the median of the standard uniform distribution?

median_value = unifinv(0.5)

median_value =

 0.5000

What is the 99th percentile of the uniform distribution between –1 and 1?

percentile = unifinv(0.99,–1,1)

percentile =

 0.9800

x F 1– p a b,() a p a b–()I 0 1,[] p()+= =
2-245

unifit
2unifitPurpose Parameter estimates for uniformly distributed data.

Syntax [ahat,bhat] = unifit(X)

[ahat,bhat,ACI,BCI] = unifit(X)

[ahat,bhat,ACI,BCI] = unifit(X,alpha)

Description [ahat,bhat] = unifit(X) returns the maximum likelihood estimates (MLEs)
of the parameters of the uniform distribution given the data in X.

[ahat,bhat,ACI,BCI] = unifit(X) also returns 95% confidence intervals, ACI
and BCI, which are matrices with two rows. The first row contains the lower
bound of the interval for each column of the matrix, X. The second row contains
the upper bound of the interval.

[ahat,bhat,ACI,BCI] = unifit(X,alpha) allows control of the confidence
level alpha. For example, if alpha is 0.01 then ACI and BCI are 99% confidence
intervals.

Example r = unifrnd(10,12,100,2);
[ahat,bhat,aci,bci] = unifit(r)

ahat =

 10.0154 10.0060

bhat =

 11.9989 11.9743

aci =

 9.9551 9.9461
 10.0154 10.0060

bci =

 11.9989 11.9743
 12.0592 12.0341

See Also betafit, binofit, expfit, gamfit, normfit, poissfit, weibfit
2-246

unifpdf
2unifpdfPurpose Continuous uniform probability density function (pdf).

Syntax Y = unifpdf(X,A,B)

Description unifpdf(X,A,B) computes the continuous uniform pdf with parameters A and
B at the values in X. The arguments X, A, and B must all be the same size except
that scalar arguments function as constant matrices of the common size of the
other arguments.

The parameter B must be greater than A.

The continuous uniform distribution pdf is:

The standard uniform distribution has A = 0 and B = 1.

Examples For fixed a and b, the uniform pdf is constant.

x = 0.1:0.1:0.6;
y = unifpdf(x)

y =

 1 1 1 1 1 1

What if x is not between a and b?

y = unifpdf(–1,0,1)

y =

 0

y f x a b,()
1

b a–
------------I a b,[] x()= =
2-247

unifrnd
2unifrndPurpose Random numbers from the continuous uniform distribution.

Syntax R = unifrnd(A,B)

R = unifrnd(A,B,m)

R = unifrnd(A,B,m,n)

Description R = unifrnd(A,B) generates uniform random numbers with parameters A and
B. The size of R is the common size of A and B if both are matrices. If either
parameter is a scalar, the size of R is the size of the other parameter.

R = unifrnd(A,B,m) generates uniform random numbers with parameters A
and B. m is a 1-by-2 vector that contains the row and column dimensions of R.

R = unifrnd(A,B,m,n) generates uniform random numbers with parameters
A and B. The scalars m and n are the row and column dimensions of R.

Examples random = unifrnd(0,1:6)

random =

 0.2190 0.0941 2.0366 2.7172 4.6735 2.3010

random = unifrnd(0,1:6,[1 6])

random =

 0.5194 1.6619 0.1037 0.2138 2.6485 4.0269

random = unifrnd(0,1,2,3)

random =

 0.0077 0.0668 0.6868
 0.3834 0.4175 0.5890
2-248

unifstat
2unifstatPurpose Mean and variance for the continuous uniform distribution.

Syntax [M,V] = unifstat(A,B)

Description For the continuous uniform distribution:

• The mean is .

• The variance is .

Examples a = 1:6;
b = 2.∗a;
[m,v] = unifstat(a,b)

m =

 1.5000 3.0000 4.5000 6.0000 7.5000 9.0000

v =

 0.0833 0.3333 0.7500 1.3333 2.0833 3.0000

a b+
2-------------

b a–()2

12--------------------
2-249

var
2varPurpose Variance of a sample.

Syntax y = var(X)
y = var(X,1)
y = var(X,w)

Description var(X) computes the variance of the data in X. For vectors, var(x) is the
variance of the elements in x. For matrices, var(X) is a row vector containing
the variance of each column of X.

var(x) normalizes by n–1 where n is the sequence length. For normally
distributed data, this makes var(x) the minimum variance unbiased estimator
MVUE of σ 2(the second parameter) .

var(x,1) normalizes by n and yields the second moment of the sample data
about its mean (moment of inertia).

var(X,w) computes the variance using the vector of weights, w. The number of
elements in w must equal the number of rows in the matrix, X. For vector x, w
and x must match in length. Each element of w must be positive.

var supports both common definitions of variance. Let SS be the sum of
the squared deviations of the elements of a vector x, from their mean. Then,
var(x) = SS/(n-1) the MVUE, and var(x,1) = SS/n the maximum likelihood
estimator (MLE) of σ 2.
2-250

var
Examples x = [–1 1];
w = [1 3];
v1 = var(x)

v1 =

 2

v2 = var(x,1)

v2 =

 1

v3 = var(x,w)

v3 =

 0.7500

See Also cov, std
2-251

weibcdf
2weibcdfPurpose Weibull cumulative distribution function (cdf).

Syntax P = weibcdf(X,A,B)

Description weibcdf(X,A,B) computes the Weibull cdf with parameters A and B at the
values in X. The arguments X, A, and B must all be the same size except that
scalar arguments function as constant matrices of the common size of the other
arguments.

Parameters A and B are positive.

The Weibull cdf is:

Examples What is the probability that a value from a Weibull distribution with
parameters a = 0.15 and b = 0.24 is less than 500?

probability = weibcdf(500,0.15,0.24)

probability =

 0.4865

How sensitive is this result to small changes in the parameters?

[A,B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);
probability = weibcdf(500,A,B)

probability =

 0.2929 0.4054 0.5000
 0.3768 0.5080 0.6116
 0.4754 0.6201 0.7248

p F x a b,() abtb 1– e atb– td
0

x

∫ 1 e axb– I 0 ∞,() x()–= = =
2-252

weibfit
2weibfitPurpose Parameter estimates and confidence intervals for Weibull data.

Syntax phat = weibfit(x)

[phat,pci] = weibfit(x)

[phat,pci] = weibfit(x,alpha)

Description phat = weibfit(x) returns the maximum likelihood estimates, phat, of the
parameters of the Weibull distribution given the data in the vector, x. phat is
a two-element row vector. phat(1) estimates the Weibull parameter, a, and
phat(2) estimates b in the pdf:

[phat,pci] = weibfit(x) also returns 95% confidence intervals in a matrix,
pci, with 2 rows. The first row contains the lower bound of the confidence
interval. The second row contains the upper bound. The columns of pci
correspond to the columns of phat.

[phat,pci] = weibfit(x,alpha) allows control over the confidence interval
returned (100(1–alpha)%).

Example r = weibrnd(0.5,0.8,100,1);
[phat,pci] = weibfit(r)

phat =

 0.4746 0.7832

pci =

 0.3851 0.6367
 0.5641 0.9298

See Also betafit, binofit, expfit, gamfit, normfit, poissfit, unifit

y f x a b,() abxb 1– e axb– I 0 ∞,() x()= =
2-253

weibinv
2weibinvPurpose Inverse of the Weibull cumulative distribution function.

Syntax X = weibinv(P,A,B)

Description weibinv(P,A,B) computes the inverse of the Weibull cdf with parameters A
and B for the probabilities in P. The arguments P, A and B must all be the same
size except that scalar arguments function as constant matrices of the common
size of the other arguments.

The parameters A and B must be positive.

The inverse of the Weibull cdf is:

Examples A batch of light bulbs have lifetimes (in hours) distributed Weibull with
parameters a = 0.15 and b = 0.24. What is the median lifetime of the bulbs?

life = weibinv(0.5,0.15,0.24)

life =

 588.4721

What is the 90th percentile?

life = weibinv(0.9,0.15,0.24)

life =

 8.7536e+04

x F 1– p a b,()
1
a---

1
1 p–
------------ 

 ln

1
b---

I 0 1,[] p()= =
2-254

weiblike
2weiblikePurpose Weibull negative log-likelihood function.

Syntax logL = weiblike(params,data)

[logL,info] = weiblike(params,data)

Description logL = weiblike(params,data) returns the Weibull log-likelihood with
parameters params(1) = a and params(2) = b given the data, xi.

[logL,info] = weiblike(params,data) adds Fisher's information matrix,
info. The diagonal elements of INFO are the asymptotic variances of their
respective parameters.

The Weibull negative log-likelihood is:

weiblike is a utility function for maximum likelihood estimation.

Example Continuing the example for weibfit:

r = weibrnd(0.5,0.8,100,1);
[logL,info] = weiblike([0.4746 0.7832],r)

logL =

 203.8216

info =

 0.0021 0.0022
 0.0022 0.0056

Reference Patel, J. K., C. H. Kapadia, and D. B. Owen, Handbook of Statistical
Distributions, Marcel-Dekker, 1976.

See Also betalike, gamlike, mle, weibfit

Llog– f a b, xi()
i 1=

∏log– f a b, xi()log

i 1=

n

∑–= =
2-255

weibpdf
2weibpdfPurpose Weibull probability density function (pdf).

Syntax Y = weibpdf(X,A,B)

Description weibpdf(X,A,B) computes the Weibull pdf with parameters A and B at the
values in X. The arguments X, A and B must all be the same size except that
scalar arguments function as constant matrices of the common size of the other
arguments.

Parameters A and B are positive.

The Weibull pdf is:

Some references refer to the Weibull distribution with a single parameter. This
corresponds to weibpdf with A =1.

Examples The exponential distribution is a special case of the Weibull distribution.

lambda = 1:6;
y = weibpdf(0.1:0.1:0.6,lambda,1)

y =

 0.9048 1.3406 1.2197 0.8076 0.4104 0.1639

y1 = exppdf(0.1:0.1:0.6,1./lambda)

y1 =

 0.9048 1.3406 1.2197 0.8076 0.4104 0.1639

Reference Devroye, L., Non-Uniform Random Variate Generation. Springer-Verlag. New
York, 1986.

y f x a b,() abxb 1– e axb– I 0 ∞,() x()= =
2-256

weibplot
2weibplotPurpose Weibull probability plot.

Syntax weibplot(X)

h = weibplot(X)

Description weibplot(X) displays a Weibull probability plot of the data in X. If X is a
matrix, weibplot displays a plot for each column.

h = weibplot(X) returns handles to the plotted lines.

The purpose of a Weibull probability plot is to graphically assess whether the
data in X could come from a Weibull distribution. If the data are Weibull the
plot will be linear. Other distribution types may introduce curvature in the
plot.

Example r = weibrnd(1.2,1.5,50,1);
weibplot(r)

See Also normplot

10-1 100

0.01

0.02

0.05

0.10

0.25

0.50

0.75
0.90
0.96
0.99

Data

P
ro

ba
bi

lit
y

Weibull Probability Plot
2-257

weibrnd
2weibrndPurpose Random numbers from the Weibull distribution.

Syntax R = weibrnd(A,B)

R = weibrnd(A,B,m)

R = weibrnd(A,B,m,n)

Description R = weibrnd(A,B) generates Weibull random numbers with parameters A and
B. The size of R is the common size of A and B if both are matrices. If either
parameter is a scalar, the size of R is the size of the other parameter.

R = weibrnd(A,B,m) generates Weibull random numbers with parameters A
and B. m is a 1-by-2 vector that contains the row and column dimensions of R.

R = weibrnd(A,B,m,n) generates Weibull random numbers with parameters
A and B. The scalars m and n are the row and column dimensions of R.

Devroye refers to the Weibull distribution with a single parameter; this is
weibrnd with A = 1.

Examples n1 = weibrnd(0.5:0.5:2,0.5:0.5:2)

n1 =

 0.0093 1.5189 0.8308 0.7541

n2 = weibrnd(1/2,1/2,[1 6])

n2 =

 29.7822 0.9359 2.1477 12.6402 0.0050 0.0121

Reference Devroye, L., Non-Uniform Random Variate Generation. Springer-Verlag.
New York, 1986.
2-258

weibstat
2weibstatPurpose Mean and variance for the Weibull distribution.

Syntax [M,V] = weibstat(A,B)

Description For the Weibull distribution:

• The mean is:

• The variance is:

Examples [m,v] = weibstat(1:4,1:4)

m =

 1.0000 0.6267 0.6192 0.6409

v =

 1.0000 0.1073 0.0506 0.0323

weibstat(0.5,0.7)

ans =

 3.4073

a

1
b---–

Γ 1 b 1–
+()

a

2
b
---–

Γ 1 2b 1–
+() Γ2 1 b 1–

+()–
2-259

x2fx
2x2fxPurpose Transform a factor settings matrix to a design matrix.

Syntax D = x2fx(X)

D = x2fx(X,'model')

Description D = x2fx(X) transforms a matrix of system inputs, X, to a design matrix for a
linear additive model with a constant term.

D = x2fx(X,'model') allows control of the order of the regression
model.'model' can be one of these strings:

• 'interaction' – includes constant, linear, and cross product terms.

• 'quadratic' – interactions plus squared terms.

• 'purequadratic' – includes constant, linear and squared terms.

Alternatively, the argument, model, can be a matrix of terms. In this case each
row of model represents one term. The value in a column is the exponent to
raise the same column in X for that term. This allows for models with
polynomial terms of arbitrary order.

x2fx is a utility function for rstool, regstats and cordexch.

Example x = [1 2 3;4 5 6]'; model = 'quadratic';
D = x2fx(x,model)

D =

 1 1 4 4 1 16
 1 2 5 10 4 25
 1 3 6 18 9 36

Let x1 be the first column of x and x2 be the second. Then, the first column of D
is for the constant term. The second column is x1 . The 3rd column is x2. The 4th
is x1x2. The fifth is x1

2 and the last is x2
2.

See Also rstool, cordexch, rowexch, regstats
2-260

xbarplot
2xbarplotPurpose X-bar chart for Statistical Process Control.

Syntax xbarplot(DATA)

xbarplot(DATA,conf)

xbarplot(DATA,conf,specs)

[outlier,h] = xbarplot(...)

Description xbarplot(DATA) displays an x-bar chart of the grouped responses in DATA. The
rows of DATA contain replicate observations taken at a given time. The rows
must be in time order. The upper and lower control limits are a 99% confidence
interval on a new observation from the process. So, roughly 99% of the plotted
points should fall between the control limits.

xbarplot(DATA,conf) allows control of the the confidence level of the upper
and lower plotted confidence limits. For example, conf = 0.95 plots 95%
confidence intervals.

xbarplot(DATA,conf,specs) plots the specification limits in the two element
vector, specs.

[outlier,h] = xbarplot(DATA,conf,specs) returns outlier, a vector of
indices to the rows where the mean of DATA is out of control, and h, a vector of
handles to the plotted lines.

Example Plot an x-bar chart of measurements on newly machined parts, taken at one
hour intervals for 36 hours. Each row of the runout matrix contains the
measurements for four parts chosen at random. The values indicate, in
2-261

xbarplot
thousandths of an inch, the amount the part radius differs from the target
radius.

load parts
xbarplot(runout,0.999,[–0.5 0.5])

See Also capaplot, histfit, ewmaplot, schart

0 5 10 15 20 25 30 35 40

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

21 25

Xbar Chart

Samples

M
ea

su
re

m
en

ts

LCL

UCL

USL

LSL
2-262

zscore
2zscore

Purpose Standardized Z score.

Syntax Z = zscore(D)

Description Z = zscore(D) returns the deviation of each column of D from its mean,
normalized by its standard deviation. This is known as the Z score of D.

For column vector V, Z score is Z = (V-mean(V))./std(V)
2-263

ztest
2ztestPurpose Hypothesis testing for the mean of one sample with known variance.

Syntax h = ztest(x,m,sigma)

h = ztest(x,m,sigma,alpha)

[h,sig,ci] = ztest(x,m,sigma,alpha,tail)

Description ztest(x,m,sigma) performs a Z test at significance level 0.05 to determine
whether a sample from a normal distribution (in x) could have mean m and
standard deviation, sigma.

h = ztest(x,m,sigma,alpha) gives control of the significance level, alpha. For
example if alpha = 0.01, and the result, h, is 1 you can reject the null hypothesis
at the significance level 0.01. If h = 0, you cannot reject the null hypothesis at
the alpha level of significance.

[h,sig,ci] = ztest(x,m,sigma,alpha,tail) allows specification of one or
two-tailed tests. tail is a flag that specifies one of three alternative
hypotheses:

• tail = 0 (default) specifies the alternative, .

• tail = 1 specifies the alternative, .

• tail = –1 specifies the alternative, .

sig is the p-value associated with the Z statistic.

sig is the probability that the observed value of Z could be as large or larger by
chance under the null hypothesis that the mean of x is equal to µ.

ci is a 1–alpha confidence interval for the true mean.

Example This example generates 100 normal random numbers with theoretical mean
zero and standard deviation one. The observed mean and standard deviation

x µ≠
x µ>

x µ<

z
x µ–

σ------------=
2-264

ztest
are different from their theoretical values, of course. We test the hypothesis
that there is no true difference.

x = normrnd(0,1,100,1);
m = mean(x)
m =

 0.0727

[h,sig,ci] = ztest(x,0,1)

h =

 0

sig =

 0.4669

ci =

 –0.1232 0.2687

The result, h = 0, means that we cannot reject the null hypothesis. The
significance level is 0.4669, which means that by chance we would have
observed values of Z more extreme than the one in this example in 47 of 100
similar experiments. A 95% confidence interval on the mean is [–0.1232
0.2687], which includes the theoretical (and hypothesized) mean of zero.
2-265

ztest
2-266

Index
A
absolute deviation 1-44
additive 1-67
alternative hypothesis 1-85
analysis of variance 1-24
ANOVA 1-65
anova1 2-12, 2-16
anova2 2-12, 2-20
average linkage 2-121

B
bacteria counts 1-65
barttest 2-13
baseball odds 2-31, 2-33
Bernoulli random variables 2-35
beta distribution 1-12, 1-13
betacdf 2-3, 2-24
betafit 2-3, 2-25
betainv 2-5, 2-26
betalike 2-3, 2-27
betapdf 2-4, 2-28
betarnd 2-6, 2-29
betastat 2-8, 2-30
binocdf 2-3, 2-31
binofit 2-3, 2-32
binoinv 2-5, 2-33
binomial distribution 1-12, 1-15
binopdf 2-4, 2-34
binornd 2-6, 2-35
binostat 2-8, 2-36
bootstrap 2-37
bootstrap sampling 1-47
box plots 1-103
boxplot 2-10, 2-39
C
capability studies 1-113
capable 2-11, 2-41
capaplot 2-11
caseread 2-14, 2-44
casewrite 2-14, 2-45
cdf 1-6, 1-7
cdf 2-3, 2-46
census 2-14
Central Limit Theorem 1-31
centroid linkage 2-121
Chatterjee and Hadi example 1-72
chi2cdf 2-3, 2-47
chi2inv 2-5, 2-48
chi2pdf 2-4, 2-49
chi2rnd 2-6, 2-50
chi2stat 2-8, 2-51
chi-square distribution 1-12, 1-17
circuit boards 2-34
cities 2-14
City Block metric

in cluster analysis 2-179
classify 2-52
cluster 2-11, 2-53
cluster analysis 1-50

computing inconsistency coefficient 1-57,
2-115

creating clusters from data 2-55
creating clusters from linkage output 1-61,

2-53
creating the cluster tree 1-53, 2-120
determining proximity 1-51, 2-178
evaluating cluster formation 1-56, 2-58
formatting distance information 1-53, 2-221
overview 1-50
plotting the cluster tree 1-55, 2-65
I-1

Index

I-2
clusterdata 2-11, 2-55
coin 2-95
combnk 2-57
complete linkage 2-121
confidence intervals

hypothesis tests 1-86
nonlinear regression 1-82

control charts 1-110
EWMA charts 1-112
S charts 1-111
Xbar charts 1-110

cophenet 2-11, 2-58
using 1-56

cophenetic correlation coefficient 2-58
defined 1-56

cordexch 2-13, 2-59
corrcoef 2-60
cov 2-61
Cp index 1-114, 2-41
Cpk index 1-114, 2-41
crosstab 2-62
cumulative distribution function (cdf) 1-6

D
data 2-2
daugment 2-13, 2-63
dcovary 2-13, 2-64
demos 1-125, 2-2

design of experiments 1-131
polynomial curve fitting 1-126
probability distributions 1-125
random number generation 1-130

dendrogram 2-11, 2-65
using 1-55

depth
in cluster analysis 1-59
descriptive 2-2
descriptive statistics 1-42
Design of Experiments 1-115

D-optimal designs 1-118
fractional factorial designs 1-117
full factorial designs 1-116

discrete uniform distribution 1-12, 1-20
discrim 2-14
dissimilarity matrix

creating 1-51
distributions 1-2, 1-5
disttool 2-14, 2-68
DOE. See Design of Experiments
D-optimal designs 1-118
dummyvar 2-69

E
erf 1-31
error function 1-31
errorbar 2-10, 2-70
estimate 1-128
Euclidean distance

in cluster analysis 2-179
EWMA charts 1-112
ewmaplot 2-11, 2-71
expcdf 2-3, 2-73
expfit 2-3, 2-74
expinv 2-5, 2-75
exponential distribution 1-12, 1-21
exppdf 2-4, 2-76
exprnd 2-6, 2-77
expstat 2-8, 2-78
extrapolated 2-194

Index
F
F distribution 1-12, 1-23
F statistic 1-72
fcdf 2-3, 2-79
ff2n 2-13, 2-80
file i/o 2-2
finv 2-5, 2-81
floppy disks 2-109
fpdf 2-4, 2-82
fractional factorial designs 1-117
frnd 2-6, 2-83
fstat 2-8, 2-84
fsurfht 2-10, 2-85
full factorial designs 1-116
fullfact 2-13, 2-87
furthest neighbor linkage 2-121

G
gamcdf 2-3, 2-88
gamfit 2-3, 2-89
gaminv 2-5, 2-90
gamlike 2-3, 2-91
gamma distribution 1-12, 1-25
gampdf 2-4, 2-92
gamrnd 2-6, 2-93
gamstat 2-8, 2-94
gas 2-14
Gaussian 2-106
geocdf 2-3, 2-95
geoinv 2-5, 2-96
geomean 2-9, 2-97
geometric distribution 1-12, 1-27
geopdf 2-4, 2-98
geornd 2-7, 2-99
geostat 2-8, 2-100
gline 2-10, 2-101

gname 2-10, 2-102
grpstats 2-104
Guinness beer 1-36, 2-229

H
hadamard 2-13
hald 2-14
harmmean 2-9, 2-105
hat matrix 1-70
hist 2-106
histfit 2-11, 2-107
histogram 1-130
hogg 2-14
Hotelling’s T squared 1-102
hougen 2-108
Hougen-Watson model 1-79
hygecdf 2-3, 2-109
hygeinv 2-6, 2-110
hygepdf 2-4, 2-111
hygernd 2-7, 2-112
hygestat 2-8, 2-113
hypergeometric distribution 1-12, 1-28
hypotheses 1-24, 2-2
hypothesis tests 1-85

I
icdf 2-114
incomplete beta function 1-13
incomplete gamma function 1-25
inconsistency coefficient 1-58
inconsistent 2-11, 2-115

using 1-58
inspector 2-182
integral equation 2-26
interaction 1-67
I-3

Index

I-4
interpolated 2-224
interquartile range (iqr) 1-44
inverse cdf 1-6, 1-7
iqr 2-9, 2-117

K
kurtosis 2-9, 2-118

L
lawdata 2-14
least-squares 2-189
leverage 2-119
light bulbs, life of 2-75
likelihood function 2-28
linear 2-2
linear models 1-65
linkage 2-11, 2-120

using 1-53
logncdf 2-4, 2-123
logninv 2-6, 2-124
lognormal distribution 1-13, 1-29
lognpdf 2-5, 2-125
lognrnd 2-7, 2-126
lognstat 2-8, 2-127
lottery 2-242
lsline 2-10, 2-128
LU factorizations 2-188

M
mad 2-9, 2-129
mahal 2-130
Mahalanobis distance 2-130

in cluster analysis 2-179
mean 1-6, 1-11
mean 2-9, 2-131
Mean Squares (MS) 2-16
measures of central tendency 1-42
measures of dispersion 1-43
median 2-9, 2-132
mileage 2-14
Minkowski metric

in cluster analysis 2-179
mle 2-3, 2-133
models

linear 1-65
nonlinear 1-79

moment 2-9, 2-134
Monte Carlo simulation 2-117
moore 2-15
multiple linear regression 1-69
multivariate statistics 1-91
mvnrnd 2-135

N
nanmax 2-9, 2-136
nanmean 2-9, 2-137
nanmedian 2-9, 2-138
nanmin 2-9, 2-139
NaNs 1-45
nanstd 2-9, 2-140
nansum 2-9, 2-141
nbincdf 2-4, 2-142
nbininv 2-6, 2-143
nbinpdf 2-5, 2-144
nbinrnd 2-7, 2-145
nbinstat 2-8, 2-146
ncfcdf 2-4, 2-147
ncfinv 2-6, 2-148
ncfpdf 2-5, 2-149
ncfrnd 2-7, 2-150

Index
ncfstat 2-8, 2-151
nctcdf 2-4, 2-152
nctinv 2-6, 2-153
nctpdf 2-5, 2-154
nctrnd 2-7, 2-155
nctstat 2-8, 2-156
ncx2cdf 2-4, 2-157
ncx2inv 2-6, 2-158
ncx2pdf 2-5, 2-159
ncx2rnd 2-7, 2-160
ncx2stat 2-8, 2-161
nearest neighbor linkage 2-121
negative binomial distribution 1-13, 1-30
Newton’s method 2-90
nlinfit 2-12, 2-162
nlintool 2-12, 2-163
nlparci 2-12, 2-164
nlpredci 2-12, 2-165
noncentral chi-square distribution 1-12
noncentral F distribution 1-12, 1-24
noncentral t distribution 1-13, 1-37
nonlinear 2-2
nonlinear regression models 1-79
normal distribution 1-13, 1-31
normal probability plots 1-103, 1-104
normalizing a dataset 1-51

using zscore 2-263
normcdf 2-4, 2-166
normdemo 2-11, 2-172
normfit 2-3, 2-167
norminv 2-6, 2-168
normlike 2-3
normpdf 2-5, 2-169
normplot 2-10, 2-170
normrnd 2-7, 2-171
normstat 2-8, 2-173
notches 2-39

null 1-85
null hypothesis 1-85

O
one-way analysis of variance (ANOVA) 1-65
outliers 1-42

P
pareto 2-10, 2-174
parts 2-15
Pascal, Blaise 1-15
PCA. See Principal Components Analysis
pcacov 2-13, 2-175
pcares 2-13, 2-176
pdf 1-6
pdf 2-177
pdist 2-11, 2-178

using 1-51
percentiles 1-46
perms 2-181
plots 1-46, 2-2
poisscdf 2-4, 2-182
poissfit 2-3, 2-183
poissinv 2-6, 2-184
Poisson distribution 1-13, 1-33
poisspdf 2-5, 2-185
poissrnd 2-7, 2-186
poisstat 2-8, 2-187
polyconf 2-12, 2-188
polydata 2-15
polyfit 2-12, 2-189
polynomial 1-126
polytool 1-125, 2-14, 2-190
polyval 2-12, 2-191
popcorn 2-21
I-5

Index

I-6
popcorn 2-15
prctile 2-9, 2-192
Principal Components Analysis 1-91

component scores 1-95
component variances 1-99
Hotelling’s T squared 1-102
Scree plot 1-101

princomp 2-13, 2-193
probability 2-2
probability density function (pdf) 1-6
probability distributions 1-5
p-value 1-69, 1-86

Q
qqplot 2-10, 2-194
QR decomposition 1-70
quality assurance 2-34
quantile-quantile plots 1-103, 1-106

R
random 2-195
random number generator 1-6
random numbers 1-9
randtool 1-125, 2-14, 2-68, 2-196
range 2-9, 2-197
ranksum 2-13, 2-198
raylcdf 2-4, 2-199
Rayleigh distribution 1-13
raylinv 2-6, 2-200
raylpdf 2-5, 2-201
raylrnd 2-7, 2-202
raylstat 2-8, 2-203
rcoplot 2-10, 2-204
reaction 2-15
refcurve 2-10, 2-205
reference lines 1-125
references 1-134
refline 2-10, 2-206
regress 2-12, 2-207
regression 1-24

nonlinear 1-79
stepwise 1-75

regstats 2-209
relative efficiency 2-117
residuals 1-73
Response Surface Methodology (RSM) 1-73
ridge 2-12, 2-211
robust 1-42
robust linear fit 2-194
rowexch 2-13, 2-213
rsmdemo 1-125, 2-14, 2-214
R-square 1-72
rstool 2-12, 2-215

S
S charts 1-111
sat 2-15
schart 2-11, 2-216
Scree plot 1-101
segmentation analysis 1-50
significance level 1-85
signrank 2-13, 2-218
signtest 2-13, 2-219
similarity matrix

creating 1-51
simulation 2-117
single linkage 2-121
skewness 1-103
skewness 2-9, 2-220
SPC. See Statistical Process Control
squareform 2-11, 2-221

Index
standard normal 2-169
Standardized Euclidean distance

in cluster analysis 2-179
statdemo 2-14, 2-221
statistical plots 1-103
Statistical Process Control

capability studies 1-113
control charts 1-110

statistical references 1-134
statistically significant 2-16
std 2-9, 2-221
stepwise 2-12, 2-223
stepwise regression 1-75
Sum of Squares (SS) 2-16
surfht 2-10, 2-224
symmetric 2-88

T
t distribution 1-13, 1-36
tabulate 2-225
taxonomy analysis 1-50
tblread 2-14, 2-226
tblwrite 2-14, 2-228
tcdf 2-4, 2-229
tinv 2-6, 2-230
tpdf 2-5, 2-231
trimmean 2-9, 2-232
trnd 2-7, 2-233
tstat 2-8, 2-234
ttest 2-13, 2-235
ttest2 2-13, 2-237
two-way ANOVA 1-67

U
unbiased 2-222, 2-250

unidcdf 2-4, 2-239
unidinv 2-6, 2-240
unidpdf 2-5, 2-241
unidrnd 2-7, 2-242
unidstat 2-8, 2-243
unifcdf 2-4, 2-244
unifinv 2-6, 2-245
unifit 2-3, 2-246
uniform distribution 1-13, 1-38
unifpdf 2-5, 2-247
unifrnd 2-7, 2-248
unifstat 2-8, 2-249

V
var 2-9, 2-250
variance 1-6, 1-11

W
ward linkage 2-122
weibcdf 2-4, 2-252
weibfit 2-253
weibinv 2-6, 2-254
weiblike 2-255
weibpdf 2-5, 2-256
weibplot 2-10, 2-257
weibrnd 2-7, 2-258
weibstat 2-8, 2-259
Weibull distribution 1-13, 1-39
Weibull probability plots 1-108
Weibull, Waloddi 1-39
whiskers 1-103, 2-39

X
x2fx 2-260
I-7

Index

I-8
Xbar charts 1-110
xbarplot 2-11, 2-261

Z
zscore 2-263
ztest 2-13, 2-264

	Preface
	Before You Begin
	What Is the Statistics Toolbox?
	How to Use This Guide
	Mathematical Notation
	Typographical Conventions

	Tutorial
	Introduction
	Primary Topic Areas
	Probability Distributions
	Descriptive Statistics
	Cluster Analysis
	Linear Models
	Nonlinear Models
	Hypothesis Tests
	Multivariate Statistics
	Statistical Plots
	Statistical Process Control (SPC)
	Design of Experiments (DOE)

	Probability Distributions
	Overview of the Functions
	Probability Density Function (pdf)
	Cumulative Distribution Function (cdf)
	Inverse Cumulative Distribution Function
	Random Numbers
	Direct
	Inversion
	Rejection
	Syntax for Random Number Functions

	Mean and Variance

	Overview of the Distributions
	Beta Distribution
	Background
	Mathematical Definition
	Parameter Estimation
	Example and Plot

	Binomial Distribution
	Background
	Mathematical Definition
	Parameter Estimation
	Example and Plot

	Chi-Square (c2) Distribution
	Background
	Mathematical Definition
	Example and Plot

	Noncentral Chi-Square Distribution
	Background
	Mathematical Definition
	Example and Plot

	Discrete Uniform Distribution
	Background
	Mathematical Definition
	Example and Plot

	Exponential Distribution
	Background
	Mathematical Definition
	Parameter Estimation
	Example and Plot

	F Distribution
	Background
	Mathematical Definition
	Example and Plot

	Noncentral F Distribution
	Background
	Mathematical Definition
	Example and Plot

	Gamma Distribution
	Background
	Mathematical Definition
	Parameter Estimation
	Example and Plot

	Geometric Distribution
	Background
	Mathematical Definition
	Example and Plot

	Hypergeometric Distribution
	Background
	Mathematical Definition
	Example and Plot

	Lognormal Distribution
	Background
	Mathematical Definition
	Example and Plot

	Negative Binomial Distribution
	Background
	Mathematical Definition
	Example and Plot

	Normal Distribution
	Background
	Mathematical Definition
	Parameter Estimation
	Example and Plot

	Poisson Distribution
	Background
	Mathematical Definition
	Parameter Estimation
	Example and Plot

	Rayleigh Distribution
	Background
	Mathematical Definition
	Example and Plot
	Parameter Estimation

	Student’s t Distribution
	Background
	Mathematical Definition
	Example and Plot

	Noncentral t Distribution
	Background
	Mathematical Definition
	Example and Plot

	Uniform (Continuous) Distribution
	Background
	Mathematical Definition
	Parameter Estimation
	Example and Plot

	Weibull Distribution
	Background
	Mathematical Definition
	Parameter Estimation
	Example and Plot

	Descriptive Statistics
	Measures of Central Tendency (Location)
	Measures of Dispersion
	Functions for Data with Missing Values (NaNs)
	Percentiles and Graphical Descriptions
	The Bootstrap

	Cluster Analysis
	Terminology and Basic Procedure
	Finding the Similarities Between Objects
	Returning Distance Information

	Defining the Links Between Objects
	Evaluating Cluster Formation
	Verifying the Cluster Tree
	Getting More Information about Cluster Links

	Creating Clusters
	Finding the Natural Divisions in the Dataset
	Specifying Arbitrary Clusters

	Linear Models
	One-Way Analysis of Variance (ANOVA)
	Two-Way Analysis of Variance (ANOVA)
	Multiple Linear Regression
	Example

	Quadratic Response Surface Models
	Exploring Graphs of Multidimensional Polynomials

	Stepwise Regression
	Stepwise Regression Interactive GUI
	Stepwise Regression Plot
	Scale Inputs
	Export
	Close

	Stepwise Regression Diagnostics Figure
	Coefficients and Confidence Intervals
	Additional Diagnostic Statistics
	Close Button.
	Help Button
	Stepwise History
	Recreating a Previous Model.

	Nonlinear Regression Models
	Mathematical Form
	Nonlinear Modeling Example
	Fitting the Hougen-Watson Model
	Confidence Intervals on the Parameter Estimates
	Confidence Intervals on the Predicted Responses
	An Interactive GUI for Nonlinear Fitting and Predi...

	Hypothesis Tests
	Terminology
	Assumptions
	Example

	Multivariate Statistics
	Principal Components Analysis
	Example
	The Principal Components (First Output)
	The Component Scores (Second Output)
	The Component Variances (Third Output)
	Hotelling’s T2 (Fourth Output)

	Statistical Plots
	Box Plots
	Normal Probability Plots
	Quantile-Quantile Plots
	Weibull Probability Plots

	Statistical Process Control (SPC)
	Control Charts
	Xbar Charts
	S Charts
	EWMA Charts

	Capability Studies

	Design of Experiments (DOE)
	Full Factorial Designs
	Fractional Factorial Designs
	D-Optimal Designs
	Generating D-Optimal Designs
	Augmenting D-Optimal Designs
	Designing Experiments with Uncontrolled Inputs

	Demos
	The disttool Demo
	The polytool Demo
	The randtool Demo
	The rsmdemo Demo
	Part 1
	Part 2

	References

	Reference
	anova1
	anova2
	barttest
	betacdf
	betafit
	betainv
	betalike
	betapdf
	betarnd
	betastat
	binocdf
	binofit
	binoinv
	binopdf
	binornd
	binostat
	bootstrp
	boxplot
	capable
	capaplot
	caseread
	casewrite
	cdf
	chi2cdf
	chi2inv
	chi2pdf
	chi2rnd
	chi2stat
	classify
	cluster
	clusterdata
	combnk
	cophenet
	cordexch
	corrcoef
	cov
	crosstab
	daugment
	dcovary
	dendrogram
	disttool
	dummyvar
	errorbar
	ewmaplot
	expcdf
	expfit
	expinv
	exppdf
	exprnd
	expstat
	fcdf
	ff2n
	finv
	fpdf
	frnd
	fstat
	fsurfht
	fullfact
	gamcdf
	gamfit
	gaminv
	gamlike
	gampdf
	gamrnd
	gamstat
	geocdf
	geoinv
	geomean
	geopdf
	geornd
	geostat
	gline
	gname
	grpstats
	harmmean
	hist
	histfit
	hougen
	hygecdf
	hygeinv
	hygepdf
	hygernd
	hygestat
	icdf
	inconsistent
	iqr
	kurtosis
	leverage
	linkage
	Mathematical Definitions

	logncdf
	logninv
	lognpdf
	lognrnd
	lognstat
	lsline
	mad
	mahal
	mean
	median
	mle
	moment
	mvnrnd
	nanmax
	nanmean
	nanmedian
	nanmin
	nanstd
	nansum
	nbincdf
	nbininv
	nbinpdf
	nbinrnd
	nbinstat
	ncfcdf
	ncfinv
	ncfpdf
	ncfrnd
	ncfstat
	nctcdf
	nctinv
	nctpdf
	nctrnd
	nctstat
	ncx2cdf
	ncx2inv
	ncx2pdf
	ncx2rnd
	ncx2stat
	nlinfit
	nlintool
	nlparci
	nlpredci
	normcdf
	normfit
	norminv
	normpdf
	normplot
	normrnd
	normspec
	normstat
	pareto
	pcacov
	pcares
	pdf
	pdist
	Mathematical Definitions of Methods

	perms
	poisscdf
	poissfit
	poissinv
	poisspdf
	poissrnd
	poisstat
	polyconf
	polyfit
	polytool
	polyval
	prctile
	princomp
	qqplot
	random
	randtool
	range
	ranksum
	raylcdf
	raylinv
	raylpdf
	raylrnd
	raylstat
	rcoplot
	refcurve
	refline
	regress
	regstats
	ridge
	rowexch
	rsmdemo
	rstool
	schart
	signrank
	signtest
	skewness
	squareform
	std
	stepwise
	surfht
	tabulate
	tblread
	tblwrite
	tcdf
	tinv
	tpdf
	trimmean
	trnd
	tstat
	ttest
	ttest2
	unidcdf
	unidinv
	unidpdf
	unidrnd
	unidstat
	unifcdf
	unifinv
	unifit
	unifpdf
	unifrnd
	unifstat
	var
	weibcdf
	weibfit
	weibinv
	weiblike
	weibpdf
	weibplot
	weibrnd
	weibstat
	x2fx
	xbarplot
	zscore
	ztest

	Index

